K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

Ta có (x2+4x+4)+(y2+2y+1)+(z^2+6z+9)>=0

9 tháng 3 2019

Cái này phải là bất đẳng thức bạn nhé!

\(x^2+y^2+z^2+14\ge4x-2y-6z\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2+6z+9\ge0\)

\(\Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2+\left(z+3\right)^2\ge0\)

Bất đẳng thức cuối đúng vì mỗi hạng tử không âm. Do đó bất đẳng thức đã cho là đúng.

Dấu bằng xảy ra khi và chỉ khi \(x=-2;y=1;z=-3\)

13 tháng 10 2019

\(x^2+y^2+z^2=4x-2y+6z-14\)

\(\Leftrightarrow x^2-4x+4+y^2+2y+1+z^2-6z+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+1\right)^2+\left(z-3\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\y+1=0\\z-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}}\)

\(\Leftrightarrow\) \(x^2\)+    \(y^2\) +     \(z^2\) -    \(4x\)+      \(2y\) -      \(6z\) +    \(14\) \(=\) \(0\)

\(\Leftrightarrow\) (  \(x^2\) -     \(4x\) +    \(4\)  )   +      (   \(y^2\) +    \(2y\) +     \(1\) )   \(=\) \(0\)

\(\Leftrightarrow\) (  \(x-2\))2   +   \(\left(y+1\right)^2\) +    \(\left(z-3\right)^2\) \(=\) \(0\)

\(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=-1\\z=3\end{cases}}\)

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 1:

Sửa đề: CMR \(x^3+y^3\ge x^2y+xy^2\)

Xét hiệu:

\(x^3+y^3-(x^2y+xy^2)=(x^3-x^2y)-(xy^2-y^3)\)

\(=x^2(x-y)-y^2(x-y)\)

\(=(x^2-y^2)(x-y)=(x+y)(x-y)(x-y)=(x+y)(x-y)^2\)

\(x+y\geq 0, (x-y)^2\geq 0\) với mọi $x,y$ không âm

\(\Rightarrow x^3+y^3-(x^2y+xy^2)=(x-y)^2(x+y)\geq 0\)

\(\Leftrightarrow x^3+y^3\geq x^2y+xy^2\)

Ta có đpcm.

AH
Akai Haruma
Giáo viên
31 tháng 3 2019

Bài 2:
$111(x-2)$ không nhỏ hơn $1998$, nghĩa là:

\(111(x-2)\geq 1998\)

\(\Leftrightarrow x-2\geq \frac{1998}{111}=18\)

\(\Leftrightarrow x\geq 20\)

Vậy với mọi giá trị $x\in\mathbb{R}$, $x\geq 20$ thì ta có điều cần thỏa mãn.

13 tháng 9 2016

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3}{4}y^2+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1>0\)

với mọi x,y

b/ \(x^2+5y^2+2x-4xy-16y+14=x^2-2x\left(2y-1\right)+\left(4y^2-4y+1\right)+\left(y^2-12y+36\right)-23\)

\(=\left(x-2y+1\right)^2+\left(y-6\right)^2-23\ge-23\)

Bạn xem lại đề

 

 

13 tháng 9 2016

2 câu trên đã có kết quả, mình giải quyết câu c nhá

5x2 + 10y2 - 6xy - 4x - 2y + 3 > 0

5x2 + 10y2 - 6xy - 4x - 2y + 3 = x2 + 4x2 + y2 + 9y2 - 6xy - 4x - 2y + 3

=[(2x)2 - 2*2x + 1] + (y2 - 2y + 1) + [(3y)2 - 2*3y + x2 ] + 1

=(2x + 1)2 + (y - 1)+ (3y - x)2 + 1

(2x + 1)2 \(\ge\)0 với mọi x

 (y - 1)\(\ge\) 0 với mọi y

 (3y - x)2\(\ge\) 0 với mọi x và y

1>0

=> ĐPCM

14 tháng 9 2016

bạn làm rõ số mũ ở đâu ra dùm mình nhé, mình giải hết cho, nhưng câu b sai đề nhé bạnhihi