K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

BD<AC vì B>C (các góc đối diện của tam giác nhé)

Hok tốt

10 tháng 5 2022

trình bày cả lời giải nữa

23 tháng 7 2018

a)độ dài đoạn AC=4+3=7cm

b)\(\widehat{DBC}\)sẽ bằng :55-30=25,vì \(\widehat{ABC}\)=55 độ mà \(\widehat{ABD}\)=33 độ nên \(\widehat{DBC}\)=55 độ

còn câu c,d mai mình giải.

23 tháng 7 2018

bn ghi đầy đủ hộ mik vs

19 tháng 7 2018

Bạn làm theo cách này nhé, sẽ ngắn gọn hơn !

A B C D H

Hạ đường cao AH của \(\Delta\)ABC.

Ta có: ^ADH là góc ngoài của \(\Delta\)ADB => ^ADH = ^ABD + ^BAD = 300 + 150 = 450

Xét \(\Delta\)AHD có: ^AHD=900; ^ADH=450 => \(\Delta\)AHD vuông cân tại H => HD = AH. 

Dễ thấy: \(\Delta\)AHB là tam giác nửa đều => AH=1/2.AB => HD=1/2.AB

\(\Delta\)AHC cũng là tam giác nửa đều => HC=1/2.AC

=> HD + HC = 1/2 (AB+AC) => CD = (AB+AC)/2

=> AC + CD = AC +  (AB+AC)/2. Do \(\Delta\)ABC nửa đều => AC=BC/2

=> AC + CD = BC/2 + (AB+AC)/2 = CABC/2 (đpcm).

19 tháng 7 2018

A B C D E I H K

Qua D kẻ đường thẳng vuông góc với BC cắt tia CA tại E. DE giao AB ở I

Gọi H và K lần lượt là hình chiếu của A lên CD và DE

Xét \(\Delta\)BID và \(\Delta\)AIE: ^BDI = ^EAI = 900; ^BID = ^AIE (Đối đỉnh)

=> ^DBI = ^AEI hay ^HBA = ^KEA

Ta có: ^HAB + ^HBA =900; ^KAE + ^KEA = 900. Mà ^HBA=^KEA => ^HAB = ^KAE.

Ta thấy: ^ADC là góc ngoài \(\Delta\)BAD => ^ADC = ^BAD + ^ABD = 300 + 150 = 450

Mà ^CDE = 900 = .^CDE= 2.^ADC => DA là phân giác ^CDE

Do H và K là hình chiếu của A lên CD và DE => AH=AK (T/c đường phân giác)

Xét \(\Delta\)AHB và \(\Delta\)AKE: AH=AK; ^AHB = ^AKE =900; ^HAB = ^KAE (cmt)

=> \(\Delta\)AHB = \(\Delta\)AKE (g.c.g)  => AB=AE (2 cạnh tương ứng)

Xét \(\Delta\)CDE: ^CDE=900; ^DCE=600 => \(\Delta\)CDE là tam giác nửa đều

= > \(CD=\frac{CE}{2}=\frac{AC+AE}{2}=\frac{AB+AC}{2}\)(Do AB=AE)

\(\Leftrightarrow AC+CD=AC+\frac{AB+AC}{2}\)(1)

Mặt khác \(\Delta\)ABC là tam giác nửa đều => \(AC=\frac{BC}{2}\)(2)

Từ (1) và (2) \(\Rightarrow AC+CD=\frac{BC}{2}+\frac{AB+AC}{2}=\frac{AB+AC+BC}{2}=\frac{C_{\Delta ABC}}{2}\)

=> ĐPCM.