cho tam giác abc, trực tâm h. gọi m là trung điểm của bc, đường thẳng vuông với mh cát ab và ac tại i và k.cmr
a, tam giác aih đồng dạng với cmh
b,hi=hk
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : góc HCB = góc BAH (1) vì cùng phụ với góc ABH
Dễ thấy góc HMB = góc IHN (cùng phụ với góc MHN)
Mà góc AHB + góc BHI = góc HMC + góc HMB = 1800
=> góc HMC = góc AHI (2)
Từ (1) và (2) suy ra đpcm
a: góc HAI=góc MCH
góc AIH=góc CHM
=>ΔAIH đồng dạng vơi ΔCHM
=>IH/HM=AH/CM(1)
b: góc HAK=góc MBH
góc AHK=góc BMH
=>ΔAHK đồng dạng với ΔBMH
=>HK/MH=AH/BM(2)
c: Từ (1), (2) suy ra IH=KH
a: AC là đường trung trực của HI
=>AC\(\perp\)HI tại trung điểm của HI
=>AC\(\perp\)HI tại M và M là trung điểm của HI
AB là đường trung trực của HK
=>AB\(\perp\)HK tại trung điểm của HK
=>AB\(\perp\)HK tại N và N là trung điểm của HK
Xét ΔAHI có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHI cân tại A
b: Xét ΔAHK có
AN là đường cao
AN là đường trung tuyến
Do đó: ΔAHK cân tại A
Ta có: ΔAHK cân tại A
mà AB là đường cao
nên AB là phân giác của góc HAK
=>\(\widehat{HAK}=2\cdot\widehat{HAB}\)
Ta có: ΔAHI cân tại A
mà AC là đường cao
nên AC là phân giác của góc HAI
=>\(\widehat{HAI}=2\cdot\widehat{HAC}\)
Ta có: \(\widehat{IAK}=\widehat{IAH}+\widehat{HAK}\)
\(=2\cdot\widehat{HAB}+2\cdot\widehat{HAC}\)
\(=2\left(\widehat{HAB}+\widehat{HAC}\right)=2\cdot90^0=180^0\)
=>I,A,K thẳng hàng
mà AK=AI(=AH)
nên A là trung điểm của KI
c: Xét ΔHKI có
M,N lần lượt là trung điểm của HI,HK
=>MN là đường trung bình của ΔHKI
=>MN//KI