Cho tam giác ABC cân tại A có góc A<90 độ. Kẻ BH vuông góc với AC, CK vuông góc với AB (H thuộc AC, K thuộc AB). Gọi O là giao điểm của BH và CK.
a) Chứng minh: tam giác ABH=tam giác ACK
b) Chứng minh: tam giac OBK=tam giac OCH
c) Trên nửa mặt phẳng bờ BC không chứa điểm A lấy điểm I sao cho IB=IC. Chứng minh ba điểm A,O,I thẳng hàng
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)