giai bat phuong trinh
\(2\sqrt{3x+4}+3\sqrt{5x+9}\ge x^2+6x+13\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
\(\left(5x-\frac{2}{3}\right)-\frac{2x^2-x}{2}\ge\frac{x\left(1-3x\right)}{3}-\frac{5x}{4}\)
<=> \(\frac{60x-8-6\left(2x^2-x\right)}{12}\ge\frac{4x\left(1-3x\right)-15x}{12}\)
<=> \(60x-8-12x^2+6x\ge4x-12x^2-15x\)
<=> \(47x\ge8\)
<=> \(x\ge\frac{8}{47}\)
Lời giải:
Với mọi $x$ thuộc ĐKXĐ, ta luôn có:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}\geq 0\\ \sqrt{x^2+3x+1}\geq 0\end{matrix}\right.\)
Do đó, để \(\sqrt{3x+x^2+\frac{9}{4}}+\sqrt{x^2+3x+1}=0\) thì:
\(\left\{\begin{matrix} \sqrt{3x+x^2+\frac{9}{4}}= 0\\ \sqrt{x^2+3x+1}=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x=\frac{-3}{2}\\ x=\frac{3\pm \sqrt{5}}{2}\end{matrix}\right.\) (vô lý)
Do đó pt vô nghiệm.
nếu dòng cuối tìm đc x là cùng 1 số thì số đó là nghiệm của pt đúng ko ạ?
DDK : \(x\ge1\)
\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)
\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)
\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)
\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)
\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)
\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)
\(\Leftrightarrow11x^2-10x-1=0\)
\(\Leftrightarrow11x^2-11x+x-1=0\)
\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)
Giải nốt nha .
Lời giải:
ĐK: \(x\geq \frac{-4}{3}\)
BPT \(\Leftrightarrow x^2+6x+13-2\sqrt{3x+4}-3\sqrt{5x+9}\leq 0\)
\(\Leftrightarrow x^2+x+2(x+2-\sqrt{3x+4})+3(x+3-\sqrt{5x+9})\leq 0\)
\(\Leftrightarrow x(x+1)+2.\frac{(x+2)^2-(3x+4)}{x+2+\sqrt{3x+4}}+3.\frac{(x+3)^2-(5x+9)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)+\frac{2x(x+1)}{x+2+\sqrt{3x+4}}+\frac{3x(x+1)}{x+3+\sqrt{5x+9}}\leq 0\)
\(\Leftrightarrow x(x+1)\left[1+\frac{2}{x+2+\sqrt{3x+4}}+\frac{3}{x+3+\sqrt{5x+9}}\right]\leq 0\)
\(\Leftrightarrow x(x+1)\leq 0\)
\(\Leftrightarrow -1\leq x\leq 0\)
Kết hợp với ĐKXĐ suy ra nghiệm của BPT là tất cả các số thực thuộc đoạn \([-1;0]\)
Trình bày đẹp :v công thức ko bung biêng