K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2019

a) \(A=\frac{3x^2+6x+10}{x^2+2x+3}\)

\(A=\frac{3x^2+6x+9+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)+1}{x^2+2x+3}\)

\(A=\frac{3\left(x^2+2x+3\right)}{x^2+2x+3}+\frac{1}{x^2+2x+1+2}\)

\(A=3+\frac{1}{^{\left(x+1\right)^2+2}}\le3+\frac{1}{2}=\frac{7}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-1\)

9 tháng 4 2022

sai

10 tháng 12 2021

b: \(A=\dfrac{2-1}{3\cdot2}=\dfrac{1}{6}\)

22 tháng 11 2020

MK KO BT MK MỚI HO C LỚP 6

AI HỌC LỚP 6 CHO MK XIN

18 tháng 11 2018

\(A=x^2-6x+10\)

\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)

\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\)     \(\forall x\in z\)

\(\Leftrightarrow A_{min}=1khix=3\)

\(B=3x^2-12x+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)

\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\)    \(\forall x\in z\)

\(\Leftrightarrow B_{min}=-11khix=2\)

25 tháng 4 2020

bài 1 : 

B=15-3x-3y

a) x+y-5=0 

=>x+y=-5

B=15-3x-3y <=> B=15-3(x+y)

Thay x+y=-5 vào biểu thức  B ta được :

B=15-3(-5)

B=15+15

B=30

Vậy giá trị của biểu thức B=15-3x-3y tại x+y+5=0 là 30

b)Theo đề bài ; ta có :

B=15-3x-3.2=10

15-3x-6=10

15-3x=16

3x=-1

\(x=\frac{-1}{3}\)

Bài 2:

a)3x2-7=5

3x2=12

x2=4

x=\(\pm2\)

b)3x-2x2=0

=> 3x=2x2

=>\(\frac{3x}{x^2}=2\)

=>\(\frac{x}{x^2}=\frac{2}{3}\)

=>\(\frac{1}{x}=\frac{2}{3}\)

=>\(3=2x\)

=>\(\frac{3}{2}=x\)

c) 8x2 + 10x + 3 = 0

=>\(8x^2-2x+12x-3=0\)

\(\Rightarrow\left(2x+3\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+3=0\\4x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=-3\\4x=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-3}{2}\\x=\frac{1}{4}\end{cases}}}\)

vậy \(x\in\left\{-\frac{3}{2};\frac{1}{4}\right\}\)

Bài 5 đề  sai  vì  |1| không thể =2

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

21 tháng 12 2018

1.a)\(\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3}{\left(x+2\right)\left(x-2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

Để biểu thức được xác định thì:\(\left(x+2\right)\left(x-2\right)\ne0\)\(\Rightarrow x\ne\pm2\)

                                                      \(\left(x+2\right)\ne0\Rightarrow x\ne-2\)

                                                      \(\left(x-2\right)\ne0\Rightarrow x\ne2\)

                         Vậy để biểu thức xác định thì : \(x\ne\pm2\)

b) để C=0 thì ....

21 tháng 12 2018

1, c , bn Nguyễn Hữu Triết chưa lm xong 

ta có : \(/x-5/=2\)

\(\Rightarrow\orbr{\begin{cases}x-5=2\\x-5=-2\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=3\end{cases}}\)

thay x = 7  vào biểu thứcC

\(\Rightarrow C=\frac{4.7^2\left(2-7\right)}{\left(7-3\right)\left(2+7\right)}=\frac{-988}{36}=\frac{-247}{9}\)KL :>...

thay x = 3 vào C 

\(\Rightarrow C=\frac{4.3^2\left(2-3\right)}{\left(3-3\right)\left(3+7\right)}\)

=> ko tìm đc giá trị C tại x = 3

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)