K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 3 2019

Ta có:\(\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{10.10}>\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\left(1\right)\)

Đặt \(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{10.11}\)

\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}-\frac{1}{11}\)

\(A=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\)suy ra

\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{10^2}>\frac{9}{22}\)

^^

15 tháng 5 2016

\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+.....+\frac{19}{9^2.10^2}\)

\(=\frac{2^2-1^2}{1^2.2^2}+\frac{3^2-2^2}{2^2.3^2}+\frac{4^2-3^2}{3^2.4^2}+......+\frac{10^2-9^2}{9^2.10^2}\)

\(=\frac{1}{1^2}-\frac{1}{2^2}+\frac{1}{2^2}-\frac{1}{3^2}+\frac{1}{3^2}-\frac{1}{4^2}+.....+\frac{1}{9^2}-\frac{1}{10^2}\)

\(=\frac{1}{1^2}-\frac{1}{10^2}=1-\frac{1}{10^2}<1\left(đpcm\right)\)

11 tháng 8 2020

tách bất đẳng thức trên ta có \(\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)gọi biều thức này là A

ta có \(A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{60}\)

\(A=\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A>20.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+40.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)nhân vế trái vs 20 vế phải 40

\(\Rightarrow A>20.\left(\frac{1}{20}-\frac{1}{40}\right)+40.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A>\frac{5}{6}>\frac{11}{5}\left(1\right)\)

ta có \(A< 40.\left(\frac{20}{20.21}+\frac{21}{21.22}+\frac{22}{22.23}+...+\frac{39}{39.40}\right)+60.\left(\frac{40}{40.41}+\frac{41}{41.42}+...+\frac{59}{59.60}\right)\)

\(\Rightarrow A< 40.\left(\frac{1}{20}-\frac{1}{40}\right)+60.\left(\frac{1}{40}-\frac{1}{60}\right)\)

\(\Rightarrow A< \frac{3}{2}\left(2\right)\)

từ (1) và (2)

\(\Rightarrow\frac{11}{15}< A< \frac{3}{2}\)

\(\Rightarrow\frac{11}{15}< \text{​​}\text{​​}\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+..+\frac{1}{60}< \frac{3}{2}\)(ĐPCM)

11 tháng 8 2020

Đáp án là mình chứng minh được.

gọi A=1/21+1/22+1/23+...+1/40

chia A thành 2 nhóm A1 và A2( A1+A2=A)

ta có A1=1/21+1/22+1/23+...+1/30>1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A1>10/30=1/3(1)

ta có A2=1/31+1/32+1/33+...+1/40>1/40+1/40+1/40+...+1/40(có 10 phân số 1/40)

A2>10/40=1/4(2)

từ (1)và (2) suy ra

A1+A2>1/3+1/4

A>7/12(3)

ta có A1=1/21+1/22+1/23+...+1/20<1/20+1/20+1/20+...+1/20(có 10 phân số 1/20)

A1<10/20=1/2(4)

ta có A2=1/31+1/32+1/33+...+1/40<1/30+1/30+1/30+...+1/30(có 10 phân số 1/30)

A2<10/30=1/3(5)

từ (4)và (5) suy ra

A1+A2<1/2+1/3

A<5/6(6)

từ (3),(6) suy ra 7/12<1/21+1/22+1/23+...+1/40<5/6

cái A1+1/21+1/22+1/23+1/24+1/25+...+1/30<1/20+1/20+1/20+1/20+...+1/20 nhé

3 tháng 6 2018

Đặt \(C=\frac{1}{21}+\frac{1}{22}+....+\frac{1}{60}=\left(\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)\)

Ta có: \(\frac{1}{21}>\frac{1}{40};\frac{1}{22}>\frac{1}{40};....\frac{1}{39}>\frac{1}{40}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+....+\frac{1}{39}+\frac{1}{40}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\) 

\(\frac{1}{41}>\frac{1}{60};\frac{1}{42}>\frac{1}{60};...\frac{1}{59}>\frac{1}{60}\)

 \(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}>\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}=\frac{1}{60}.20=\frac{1}{3}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}>\frac{11}{15}\)

Vậy \(C>\frac{11}{15}\) (1)

Lại có: \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...\frac{1}{40}< \frac{1}{20}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{40}< \frac{1}{20}+....+\frac{1}{20}=\frac{1}{20}.20=1\)

\(\frac{1}{41}< \frac{1}{40};\frac{1}{42}< \frac{1}{40};...\frac{1}{60}< \frac{1}{40}\)

\(\Rightarrow\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}< \frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{40}.20=\frac{1}{2}\)

\(\Rightarrow\frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{1}{2}+1=\frac{3}{2}\)

Vậy \(C< \frac{3}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{11}{15}< \frac{1}{21}+\frac{1}{22}+...+\frac{1}{60}< \frac{3}{2}\)

21 tháng 4 2019

à

21 tháng 4 2019

hihi

9 tháng 5 2015

So so hang trong day la:

(50-21) : 1 + 1 = 30

Gia su = 1/50 het thi tong la:

30 x 1/50 = 3/5

Vi 1/50 la so nho nhat nen tong se lon hon 3/5

Gia su tat ca deu la 1/21

Tong la:

1/21 x 30 = 30/21 = 10/7

So sanh 10/7 va 3/2, ta thay 3/2 lon hon 10/7 la 1/14 don vi

Vi 1/21 la so lon nhat nen tong se be hon 3/2

 

 

11 tháng 3 2017

ta có:A= 1/21 + 1/22 + ... + 1/50 > 1/50 +1/50 +...+1/50=1/50 x 30 = 3/5

=> A > 3/5

lại có: A = 1/21 + 1/22 + ... + 1/50 < 1/20 + 1/20  + ... +1/20= 1/20 x 30 = 3/2

=> A <3/2

cách này là cách nhanh nhất

11 tháng 6 2018

S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\)  ( có 181 phân số )

=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)

=> S > \(\frac{1}{200}.181\)

=> S > \(\frac{181}{200}\)\(\frac{180}{200}\)\(\frac{9}{10}\)

Vậy S > 9 / 10

11 tháng 6 2018

GIÚP NHA , AI LÀM ĐƯƠC 1 NGÀY TK 3TK