Tìm các cặp số nguyên (x,y) biết :
\(\frac{x}{5}\) +1 = \(\frac{1}{y-1}\)
CẦN GẤP TICK NGAY
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{5}-\frac{1}{y+2}=\frac{1}{10}\)
\(\frac{1}{y+2}=\frac{x}{5}-\frac{1}{10}=\frac{2x}{10}-\frac{1}{10}=\frac{2x-1}{10}\)
\(\Rightarrow\left(y+2\right).\left(2x-1\right)=1.10=10\)
\(\Rightarrow2x-1\inƯ\left(10\right)\)
Mà 2x - 1 là lẻ
\(\Rightarrow2x-1\in\left[1;5;-1;-5\right]\)
Xét \(2x-1=1\Rightarrow x=1\)
\(\Rightarrow y+2=10\Rightarrow y=8\)
Xét \(2x-1=5\Rightarrow x=3\)
\(\Rightarrow y+2=2\Rightarrow y=0\)
Xét \(2x-1=-1\Rightarrow x=0\)
\(\Rightarrow y+2=-10\Rightarrow y=-12\)
Xét \(2x-1=-5\Rightarrow x=-2\)
\(\Rightarrow y+2=-2\Rightarrow y=-4\)
tính: \(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{1982}+\frac{1}{1984}+\frac{1}{1986}\)
\(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)
\(\Leftrightarrow\left(\frac{x-2}{27}-1\right)+\left(\frac{x-3}{26}-1\right)+\left(\frac{x-4}{25}-1\right)+\left(\frac{x-5}{24}-1\right)\)\(+\left(\frac{x-44}{5}+3\right)=1-1\)
\(\Leftrightarrow\frac{x-29}{27}+\frac{x-29}{26}+\frac{x-29}{25}+\frac{x-29}{24}\)\(+\frac{x-29}{5}=0\)
\(\Leftrightarrow\left(x-29\right)\left(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\right)=0\)
Mà \(\frac{1}{27}+\frac{1}{26}+\frac{1}{25}+\frac{1}{24}+\frac{1}{5}\ne0\)
=> x - 29 = 0
=> x = 29.
Ta có:
\(\frac{x}{5}\)+\(\frac{5}{5}\)= \(\frac{1}{y-1}\)
\(\frac{x+5}{5}\)= \(\frac{1}{y-1}\)
=>\(\frac{x+5}{y-1}\)= \(\frac{1}{5}\)
=> x+5=1
x=1-5
x=(-4)
=>y-1=5
y= 5+1
y=6
Vậy x=(-4)
y=(6)
Sau đó ta có: x(y-1)+(y-1)=5
(x+1)(y-1)=5=1.5=5.1=-1.(-5)=-5.(-1)
Tự xét lập bảng...
Vậy x=0 thì y=6
x=4 thì y=2
x=-2 thì y=-4
x=-6 thì y=0
\(\frac{x}{5}+1=\frac{x+5}{5}=\frac{1}{y-1}\)
=>\(\left(x+5\right)\left(y-1\right)=5.1=\left(-5\right)\left(-1\right)\)
TH1: \(x+5=5\)=> \(x=0\)
\(y-1=1\)=> \(y=2\)
TH2: \(x+5=1\)=> \(x=-4\)
\(y-1=5\)=> \(y=6\)
TH3: \(x+5=-5\)=> \(x=-10\)
\(y-1=-1\)=> \(y=0\)
TH4: \(x+5=-1\)=> \(x=-6\)
\(y-1=-5\)=> \(y=-4\)