Cho tam giac ABC can tai A ve tia phan giac CD(D thuoc AB) Ve AH vuong goc CD va AH cat BC tai E. a)Biet AB=24 cm,AC=10 cm tinh BC.Chung minh tam giac AHC= tam giac EHC va tam giac ACE can.Chung minh DB>DA
Ve hinh dum
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) Xét \(\Delta_VABH\) và \(\Delta_vCBA\):
\(\widehat{B}\): chung
\(\Rightarrow\Delta_vABH\sim\Delta_vCBA\left(gn\right)\)
B) Đề sai vì BC\(=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(\Rightarrow BE=10-4=6\left(cm\right)\)
\(AH=\frac{6.8}{10}=4,8\left(cm\right)\)
mà \(AH^2=BH.HC\) nên AH=BE
Vậy đề sai.
C) Có: \(BH=\frac{AB^2}{BC}=\frac{6^2}{10}=3,6\left(cm\right)\)
\(S_{ABH}=\frac{1}{2},3,6.4,8=8,64\left(cm^2\right)\)
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
Do đó: ΔABH=ΔACH
b: ΔBAC cân tại A
mà AH là phân giác
nên AH vuông góc với BC
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a) trong tam giác ABC vuông tại B có:
AB2 + AC2 = BC2
=> 32 + 52 = BC2
=> BC2 = 9 + 25
=> BC2 = 34 => BC = \(\sqrt{34}cm\)
b)
tự vẽ hình nha bạn
Xét tam giác ABD và tam giác AED có :
góc BAD = góc EAD (gt)
AD cạnh chung
góc B = góc C = 90 độ (gt)
suy ra : tam giác ABD = tam giác AED (cạnh huyền - góc nhọn )
c)
tam giác ABD = tam giác AED
suy ra :BD = ED (2 cạnh tương ứng )
xét tam giác DBK và tam giác DEC có :
BD = ED ( c/ m trên )
góc BDK = góc EDC ( đối đỉnh )
góc DBK = góc DEC ( gt )
suy ra : tam giác DBK = góc DEC ( g-c-g )
suy ra DK = DC ( 2 cạnh tương ứng )
hay tam giác KDC cân tại D
câu d mình chưa tính đc