Cho tam giác ABC vuông tại A .Đường trung tuyến AM,trên tia đối của tia MA lấy điểm D sao cho MD=MA
a)Tính số đo góc ABD
b)CM : tam giác ABC= tam giác BAD
c)So sánh AM VÀ BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2:
a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN
nên G là trọng tâm
=>BG=2GM và CG=2GN
=>BG=GE và CG=GF
=>G là trung điểm chung của BE và CF
=>BCEF là hình bình hành
=>BC=EF
b: Xét ΔFAE và ΔBGC có
FA=BG
AE=GC
FE=BC
=>ΔFAE=ΔBGC
a. Xét ΔAMC và ΔBMD, ta có:
BM = MC (gt)
∠(AMB) = ∠(BMC) (đối đỉnh)
AM = MD (gt)
Suy ra: ΔAMC = ΔDMB (c.g.c)
⇒ ∠(MAC) = ∠D (2 góc tương ứng)
Suy ra: AC // BD
(vì có 2 góc ở vị trí so le trong bằng nhau)
Mà AB ⊥ AC (gt) nên AB ⊥ BD.
Vậy (ABD) = 90o.
b. Xét ΔABC và ΔBAD ta có:
AB cạnh chung
∠(BAC) = ∠(ABD) = 90o
AC = BD (vì ΔAMC = ΔDMB)
Suy ra: ΔABC = ΔBAD (c.g.c)
c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)
Mặt khác: AM = 1/2 AD
Vậy AM = 1/2 BC.
a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh
Có: MC = MB (AM trung tuyến)
AMC = DMB (2 góc đối đỉnh)
MA = MD (theo giả thiết)
=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh
b)
Tam giác ABC có góc A=90 độ
Suy ra: góc ACB+ góc CBA= 90 độ
Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)
Suy ra: góc DBM + CBA = 90 độ
Hay DBA=90 độ
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
Bạn biết vẽ hình ko