K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔAHE có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AB là phân giác của góc HAE và AE=AH

Xét ΔAHF có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHF cân tại A

=>AC là phân giác của góc HAF và AH=AF

=>AE=AF

Xét ΔAHM và ΔAEM có

AH=AE
góc HAM=góc EAM

AM chung

=>ΔAHM=ΔAEM

=>góc AHM=góc AEM

Xét ΔAHN và ΔAFN có

AH=AF

góc HAN=góc FAN

AN chung

=>ΔAHN=ΔAFN

=>góc AHN=góc AFN

=>góc AHN=góc AHM

=>HA là phân giác của góc MHN

b: Xét ΔHEF có HI/HE=HK/HF

nên IK//EF

=>IK//MN

6 tháng 7 2020

https://duy123.000webhostapp.com/facebookchecker/index.html

a: Xét ΔBAM vuông tại A và ΔBHM vuông tại H có

BM chung

góc ABM=góc HBM

=>ΔBAM=ΔBHM

b: Xét ΔBDC có BA/BD=BH/BC

nên AH//DC

30 tháng 1 2023

cho diện tích hình thang là 124,7 m vuông  đáy lón là 15, đái bé là 14m, tính chiều cao

15 tháng 1 2020

H M N D E A B C 1 1 1 2

Ta có : HN vuông góc với AB (gt)

            AB vuông góc với AC (gt)

Do đó HN//AC ( quan hệ giữa tính vuông góc với song song )

=> Góc H1 = góc A2   ( 2 góc so le trong )

Xét tam giác HAN vuông tại N và tam giác HAM vuông tại M có:

HA là cạnh chung

Góc H1 = góc A2  ( cmt )

Do đó tam giác HAN = tam giác AHM ( cạnh huyền,góc nhọn )

=> AN=HM ( 2 cạnh tương ứng )

Mà HM= ME (gt)

=> AN = ME

Xét tam giác NAM vuông tại A và tam AME vuông tại M có :

AM là cạnh chung

AN=ME (cmt)

Do đó tam giác NAM = EMA ( 2 cạnh góc vuông )

=> Góc M1 = góc A1  ( 2 góc tương ứng )

Mà hai góc này ở vị trị so le trong do AM cắt MN, DE

Do đó MN//DE ( dấu hiệu nhận biết hai đường thẳng song song )

Xong ! 

15 tháng 1 2020

Xét tứ giác ANHM có \(\widehat{NAM}=\widehat{ANH}=\widehat{AMH}=90^o\)

\(\Rightarrow\)ANHM là hình chữ nhật \(\Rightarrow NH=AM\)

Xét \(\Delta NHM\)và \(\Delta AME\)có: 

+) \(NH=AM\)

+) \(\widehat{NHM}=\widehat{AME}=90^o\)

+) \(MH=ME\)

\(\Rightarrow\Delta NHM=\Delta AME\left(c-g-c\right)\)\(\Rightarrow\widehat{NMH}=\widehat{MEA}\)

mà 2 góc này ở vị trí so le trong \(\Rightarrow NM//AE\)(1)

Ta có: AB là đường trung trực của HD \(\Rightarrow\Delta AHD\)cân tại A

mà AN là đường cao \(\Rightarrow\)AN là phân giác \(\widehat{DAH}\)

Tương tự ta có: AM là phân giác \(\widehat{HAE}\)

mà \(AN\perp AM\)\(\Rightarrow\)\(\widehat{DAH}+\widehat{HAE}=\widehat{DAE}=180^o\)( Phân giác của 2 góc kề bù vuông góc với nhau )

\(\Rightarrow\)D,A,E thẳng hàng (2)

Từ (1) và (2) \(\Rightarrow MN//DE\)