K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2019

Ta có: \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}+\dfrac{1}{32}+..+\dfrac{1}{32}\left(có\right)62sốhạng\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>\dfrac{1}{32}.63=\dfrac{63}{32}=2\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}>2\)(đây là điều cần chứng tỏ)

24 tháng 3 2019

Hình như bn nhầm rồi Nguyễn Thành Trương.Mk tính 63/32 đâu có bằng 2.Mà có 62 số hạng thì phải nhân vs 62 chứ.Cậu xem lại và giải lại giúp mk nhé mk đang rất cần gấp Nguyễn Thành Trươnghiha

10 tháng 9 2016

bạn xét :1/2+1/3+1/4>1 
vậy 1/5+1/6+1/7+1/8...>1 
vậy nó >2 
cách khác. 
tính S62=31*[2*1/2-(62-1)*(-1/6)]>2

10 tháng 9 2016

163-x=13\5

163-x=2dư3

DD
31 tháng 8 2021

\(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{63}\)

\(>\frac{1}{2}+\left(\frac{1}{3}+\frac{1}{4}\right)+\left(\frac{1}{5}+...+\frac{1}{8}\right)+\left(\frac{1}{9}+...+\frac{1}{16}\right)\)

\(>\frac{1}{2}+\left(\frac{1}{4}+\frac{1}{4}\right)+\left(\frac{1}{8}+...+\frac{1}{8}\right)+\left(\frac{1}{16}+...+\frac{1}{16}\right)\)

\(=\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=2\)

12 tháng 4 2015

          bạn hãy áp dụng và like nha

Chứng minh rằng: 1 + 1/2 + 1/3 + 1/4 +...+ 1/63 < 6?

trước hết ta cần chứng minh bài toán 1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)<n/(k+1... với n>2,k thuộc N* 
Thật vậy vì k thuộc N*nên ta có 
k+1=k+1=>1/(k+1)= 1/(k+1) 
k+2>k+1=>1/(k+2)<1/(k+1) 
k+3>k+1=>1/(k+3)< 1/(k+1) 
… 
k+n>k+1=>1/(k+n)< 1/(k+1) 
=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n)< 
1/(k+1)+ 1/(k+1)+…+ 1/(k+1) (có n số 1/(k+1) ) 

=>1/(k+1)+1/(k+2)+1/(k+3)+…+1/(k+n) 
<n/(k+1) 
………………………… 
Áp dụng bài toán trên ta có 
1=1 
1/2+1/3 
=1/(1+1)+1/(1+2) 
<2/(1+1)=2/2=1 
1/4+1/5+1/6+1/7 
=1/(3+1)+1/(3+2)+1/(3+3)+1/(3+4) 
<4/(3+1)=4/4=1 
1 / 8 +1/9 ... +1/15 
=1/(7+1)+1/(7+2)+…+1/(7+8) 
<8/(7+1)=8/8=1 
1/16+1/17+..+1/31 
=1/(15+1)+1/(15+2)+….+1/(15+16) 
<16/(15+1)=16/16=1 
1/32+1/33+…+1/63 
=1/(31=1)+1/(32+1)+…+1/(31+32) 
<32/(31+1)=32/32=1 
=>1 / 2 + 1 / 3+…+1/63<1+1+1+1+1+1 
=>1 / 2 + 1 / 3+…+1/63<6 (đpcm)

12 tháng 4 2015

sao lại 1,4, là 1/4 chứ

7 tháng 7 2016

S= (1/2 +1/4+1/6+….1/62)+ (1/ 3+1/5+1/7……+1/63)
ta thấy S1=1/2+1/4+….1/62 có 31 số
1/61 < 1/2, 1/62 < 1/4...... ==> s1 > 1/62+1/62 +….+1/62 (31 số ) = 31/62=1/2
S2= 1/3 +1/5+…+1/63 có 31 số
ta thấy 1/63< 1/3 , 1/63 < 1/5..... ====>S2 > 1/63+1/63…+1/63(31 số)
S2 > 31/ 63 =1/3
S1+s2 > 1/2 +1/3 = 5/6

5 tháng 5 2017

giúp mình nhé

7 tháng 5 2017

\(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{63}+\dfrac{1}{64}\\ =\dfrac{1}{2}+\left(\dfrac{1}{3}+\dfrac{1}{4}\right)+\left(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+\dfrac{1}{8}\right)+\left(\dfrac{1}{9}+\dfrac{1}{10}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{17}+\dfrac{1}{18}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{33}+\dfrac{1}{34}+...+\dfrac{1}{64}\right)\)

Ta thấy:

\(\dfrac{1}{3}\) lớn hơn \(\dfrac{1}{4}\)

\(\dfrac{1}{5};\dfrac{1}{6};\dfrac{1}{7}\) lớn hơn \(\dfrac{1}{8}\)

\(\dfrac{1}{9};\dfrac{1}{10};...;\dfrac{1}{15}\) lớn hơn \(\dfrac{1}{16}\)

\(\dfrac{1}{17};\dfrac{1}{18};...;\dfrac{1}{31}\) lớn hơn \(\dfrac{1}{32}\)

\(\dfrac{1}{33};\dfrac{1}{34};...;\dfrac{1}{63}\) lớn hơn \(\dfrac{1}{64}\)

\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+\left(\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}+\dfrac{1}{8}\right)+\left(\dfrac{1}{16}+\dfrac{1}{16}+...+\dfrac{1}{16}\right)+\left(\dfrac{1}{32}+\dfrac{1}{32}+...+\dfrac{1}{32}\right)+\left(\dfrac{1}{64}+\dfrac{1}{64}+...+\dfrac{1}{64}\right)\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{2}\\ \dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)

Vậy \(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{64}>3\)(ĐPCM)

18 tháng 6 2020

Help me ! Mình sắp phải nộp rồi .

18 tháng 6 2020

de co sai khong ban? Mk nghi phai la 1/2+1/3+1/4+...+1/63 > 2 chu?

20 tháng 7 2016

Ta có: A = 1/2+1/3+1/4+...+1/62+1/63+1/64

A = 1+(1/2+1/3+1/4)+(1/5+1/6+1/7+1/8)+(1/9+1/10+...+1/16)+...+(1/17+1/18+....+1/32)+(1/33+1/34+...+1/64)

Ta có: 1/2+1/3+1/4>1/2+1/4+1/4=1

1/5+1/6+1/7+1/8>1/8+1/8+1/8+1/8=1/8.4=1/2

1/9 +1/10+...+1/16>1/16+1/16+...1/16=1/16.8=1/2

1/33+1/34+...+1/64>1/64+1/64+...+1/64=1/64.32=1/2

Vậy A > 4

17 tháng 7 2016

Xin ai giải hộ cái

xét từng đoạn 1 , 1/2 ,1/2^3 ,1/2^4 ,1/2^5 ,1/2^6 
ta có 
1 = 1 
1/2 + 1/3 < 1/2 + 1/2 = 1 
1/4 + 1/5 + .. + 1/7 < 1/4 +..+ 1/4 = 4/4 = 1 
1/8 + 1/9 + .. + 1/15 < 1/8 + .. + 1/8 = 8/8 = 1 
tương tự 
1/16 +1/17 + .. + 1/31 < 1 
1/32 + 1/33 + .. + 1/63 < 1 
=> cộng lại => B < 6

vi 1/2+1/3+1/4 da lon hon 1 roi ma