K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2021

hiiiiiiiiiiiii kkkkkkkkkk ddddddd

4 tháng 10 2021

 Một số hệ thức về cạnh và góc trong tam giác vuông

Xét ΔABC vuông tại A có sin C=AB/BC

=>6/BC=1/2

=>BC=12cm

AC=căn 12^2-6^2=6*căn 3(cm)

AH=6*6căn 3/12=3*căn 3(cm)

BH=AB^2/BC=3cm

CH=12-3=9cm

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

a) Áp dụng định lý tổng 3 góc trong một tam giác ta có:

$\widehat{AIC}=180^0-(\widehat{IAC}+\widehat{ICA})=180^0-\frac{\widehat{A}+\widehat{C}}{2}$

$=180^0-\frac{180^0-\widehat{B}}{2}=180^0-\frac{180^0-60^0}{2}=120^0$

b) 

Xét tam giác $APK$ có $AH$ đồng thời là đường cao và đường phân giác nên $APK$ là tam giác cân tại $A$

Do đó: đường cao $AH$ đồng thời cũng là đường trung tuyến.

$\Rightarrow HK=\frac{1}{2}PK=\frac{1}{2}.6=3$ (cm)

Áp dụng định lý Pitago: $AK=\sqrt{AH^2+HK^2}=\sqrt{4^2+3^2}=5$ (cm)

c) 

Kẻ phân giác $IT$ của $\widehat{AIC}$ thì $\widehat{AIT}=\widehat{CIT}=60^0$ 

$\widehat{AIE}=\widehat{CID}=180^0-\widehat{AIC}=60^0$

Xét tam giác $AEI$ và $ATI$ có:

$\widehat{EAI}=\widehat{TAI}$

$\widehat{AIE}=\widehat{AIT}=60^0$ (cmt)

$AI$ chung

$\Rightarrow \triangle AEI=\triangle ATI$ (g.c.g)

$\Rightarrow IE=TI(1)$

Tương tự: $\triangle CTI=\triangle CDI$(g.c.g)

$\Rightarrow TI=DI(2)$

$(1);(2)\Rightarrow IE=ID$ nên $IDE$ là tam giác cân tại $I$.

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Hình vẽ:

undefined

9 tháng 6 2019

giúp vs ạ

9 tháng 4 2022

a, BA = BD (gt)

=> Δ ABD cân tại B (đn)

góc ABC = 60 (gt)

=> Δ ABD đều (dấu hiệu)

b) Ta có\(\widehat{A}\)=90 độ và\(\widehat{B}\)=60 độ =>\(\widehat{C}\)=30 độ (1)

Mà BI là phân giác của \(\widehat{B}\)=> \(\widehat{IBC}\)=30 độ(2)

từ (1) và (2) => Δ IBC cân tại I

c) xét 2 tam giác BIA và BID có: \(\widehat{A}\)+\(\widehat{AIB}\)+\(\widehat{IBA}\)+\(\widehat{IBD}\)+\(\widehat{BDI}\)+\(\widehat{DIB}\)=360 độ 

=> \(\widehat{AID}\)=120 độ

=> \(\widehat{DIC}\)=60 độ 

Xét Δ BIA và Δ CID có:

 DI=AI (Δ BIA=Δ BID)

\(\widehat{BIA}\)=\(\widehat{DIC}\)=60 độ

IB=IC(vìΔ IBC cân)

=>ΔBIA=Δ CID(c.g.c)

=> BA=CD mà BA=BD=> BD=DC

=> D là trung điểm của BC

d) vì AB=\(\dfrac{1}{2}\) BC nên BC=12 cm

Áp dụng định lí py-ta-go ta có:

BC2=AB2+AC2

=> AC2=BC2−AB2

=> AC2=144 - 36=108 cm

=> AC= \(\sqrt{108}\)(cm)

vậy BC=12 cm; AC= \(\sqrt{108}\)cm