Tính giá trị đa thức một biến sau tại x=2014
f(x)=x6 - 2015x5 + 2015x4 -2015x3 + 2015x2 - 2015x + 2018
Giải giúp tớ với!!!!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a=x4-2223x3+2223x2-2223x+2223
=x3(x-2223)+x(x-2223)+2222x2+2003(*)
thay x=2222,ta co:
(*)<=>-22223-2222+22223+2223=1
dung thi chon nha
Thay x = -1 và đa thức, ta có:
(-1)2 + (-1)4 + (-1)6 + … + (-1)100 =
Vậy giá trị đa thức bằng 50 tại x = -1.
A(x)=F(x)-G(x)
=1+x+x^2+...+x^100-x^2-x^4-...-x^100
=1+x+x^3+...+x^99
Số số lẻ từ 1 đến 99 là (99-1):2+1=50(số)
A(-1)=1+(-1)+(-1)^3+...+(-1)^99
=1-50*1=1-50=-49
a: \(f\left(-2\right)=5\cdot4-8-8=4\)
b: \(f\left(x\right)+g\left(x\right)=6x^2+2x-8\)
c: Đặt G(x)=0
=>x(x-2)=0
=>x=0 hoặc x=2
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(f_{\left(x\right)}=x^6-2002x^5+2002x^4-2002x^3+2002x^2-2002x+2006\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+5\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+x+5\)
\(=5\)
Vậy \(f_{\left(x\right)}=5\)Tại x = 2001
Lạ OLM ghê làm sai mà vẫn được k ???
Ta có : x=2001 \(\Rightarrow\)x+1=2002
\(F\left(x\right)=x^6-\left(x-1\right).x^5+\left(x-1\right).x^4-\left(x-1\right).x^3+\left(x-1\right).x^2-\left(x-1\right).x+2006\)
\(F\left(x\right)=x^6-x^6-x^5+x^5+x^4-x^4-x^3+x^3+x^2-x^2-x+2006\)
\(F\left(2001\right)=-2001+2006=5\)