rút gọn A=(\(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\)) : (\(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\))
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{\frac{3}{2}+\frac{2}{5}+\frac{1}{10}}{\frac{3}{2}+\frac{2}{3}+\frac{1}{12}}\)
\(\Rightarrow A=\frac{\frac{15}{10}+\frac{4}{10}+\frac{1}{10}}{\frac{18}{12}+\frac{8}{12}+\frac{1}{12}}=\frac{\frac{20}{10}}{\frac{27}{12}}=\frac{2}{\frac{9}{4}}=2:\frac{9}{4}=2.\frac{4}{9}=\frac{8}{9}\)
! Ko bt có đúng ko nx @@@
~ Học tốt
# Chiyuki Fujito
\(A=\frac{\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right)}{\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)}\)
\(A=\frac{\left(\frac{15}{10}-\frac{4}{10}+\frac{1}{10}\right)}{\left(\frac{18}{12}-\frac{8}{12}+\frac{1}{12}\right)}\)
\(A=\frac{\frac{6}{5}}{\frac{11}{12}}=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}\times\frac{12}{11}\)
\(A=\frac{72}{55}\)
1. \(A=\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right):\left(\frac{3}{2}-\frac{2}{3}+\frac{1}{12}\right)=\frac{6}{5}:\frac{11}{12}=\frac{6}{5}.\frac{12}{11}=\frac{72}{55}\)
2. 2x+2 . 3x+1 . 5x = 10800
=> 2x . 22 . 3x . 3 . 5x = 10800
=> ( 2 . 3 . 5 )x . 12 = 10800
=> 30x = 900
=> 30x = 302
=> x = 2
\(A=\frac{10}{3}+\frac{10}{9}+\frac{10\sqrt{5}}{3\sqrt{36\sqrt{6}}}\)
\(A=\frac{40}{9}+\frac{10\sqrt{5}}{18\sqrt{\sqrt{6}}}\)
trục căn thứa là ra nha bạn
Ta có:
\(A=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\cdot\sqrt{\frac{5}{12}-\frac{1}{16}}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\cdot\sqrt{\frac{17}{48}}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\cdot\frac{\sqrt{51}}{12}\)
\(A=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{\sqrt{17}}{12}\)
\(A=\frac{4\sqrt{3}+2\sqrt{2}+\sqrt{17}}{12}\)
Ta có: \(\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\sqrt{\frac{5}{12}-\frac{\sqrt{6}}{6}}=\sqrt{\frac{5-2\sqrt{6}}{12}}\)
Vì \(5-2\sqrt{6}=3-2\sqrt{3}.\sqrt{2}+2=\left(\sqrt{3}\right)^2-2\sqrt{3}.\sqrt{2}+\left(\sqrt{2}\right)^2\)\(\Rightarrow5-2\sqrt{6}=\left(\sqrt{3}-\sqrt{2}\right)^2\)
Như vậy: \(\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{1}{2\sqrt{3}}\left(\sqrt{3}-\sqrt{2}\right)\)
Lại có: \(\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}+\frac{1}{\sqrt{3}}.\frac{1}{2\sqrt{3}}\left(\sqrt{3}-\sqrt{2}\right)\)
Rút gọn ta được \(A=\frac{\sqrt{3}}{2}\)
A=\(\left(\frac{3}{2}-\frac{2}{5}+\frac{1}{10}\right).\left(\frac{2}{3}-\frac{3}{2}+12\right)\)
A=\(\frac{6}{5}\).\(\frac{67}{6}\)=\(\frac{67}{5}\)
Hok tốt