Cho tam giác ABC cân tại A. Trên BC lấy D,E sao cho BD=DE=EC. Trên tia đối của DA lấy điểm M sao cho AD =AM
A) CM : BM<BA.
B) CM: Góc BAD bằng Góc EAC và bé hơn góc DAE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a bạn làm được thì mình khỏi làm lại nhé! Còn đây là câu b và c.
Xét \(\Delta\)NBD và \(\Delta\)ECM có: BD=CE(gt), NB=CM(gt),ND=ME (c/m a)
=> \(\Delta\)=\(\Delta\) (ccc) => \(\widehat{DNB}=\widehat{CME}\) mà \(\widehat{CME}=\widehat{DMB}\) (đối đỉnh)
=> \(\widehat{DNB}=\widehat{DMB}\). Xét tam giác NDM có: \(\widehat{DNB}=\widehat{DMB}\) => \(\Delta\)NDM cân tại D => DN=DM mà DN=ME (c/m a) => DM=ME (1)
Ta có B.M,C thẳng hàng =>\(\widehat{BMD}+\widehat{DMC}=180^o\)
Mặt khác \(\widehat{BMD}=\widehat{CME}\) ( cùng = \(\widehat{BND}\))
=>\(\widehat{CME} +\widehat{DMC}=180^o\) => D,M,E thẳng hàng (2)
Từ (1) và (2) => M trung điểm DE.
a: Xét ΔCBD có
CA vừa là trung tuyến, vừa là đường cao
=>ΔCDB cân tại C
b: Xét ΔMDE và ΔMCB có
góc DME=góc CMB
MD=MC
góc MDE=góc MCB
=>ΔMDE=ΔMCB
=>ME=MB và CB=DE
BC+BD=ED+BD>BE
a,chứng minh gócABD bằng góc ECA bằng góc ngoài (= BAM + 90 độ)
Tam giác ABD = tam giác ECA (c-g-c)
b, AD = AE (2 cạnh tương ứng) suy ra tam giác DAE cân tại a (định nghĩa)
Tam giác ADM vuông tại M suy ra ADM +DAM=90 độ mà góc ADM = EAC (2 góc tương ứng)
Suy ra DAM + EAC = 90 ĐỘ suy ra góc DAE = 90 độ suy ra tam giác DAE vuông cân tại A