K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(M=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.....+\frac{1}{10.11.12}\)

\(M=\frac{1}{2}-\frac{1}{11.12}\)

\(M=\frac{65}{132}\)

Ngắn gọn , xúc tích !!! :))

 
1 tháng 5 2015

\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)

\(=\frac{1}{2}-\frac{1}{11.12}\)

\(=\frac{65}{132}\)

1 tháng 5 2015

Ta có nhận xét: 1/1.2 - 1/2.3 = 3-1/1.2.3 = 2/1.2.3          

                       1/2.3 - 1/3.4 = 4-2/2.3.4 = 2/2.3.4      

Suy ra:             1/1.2.3 = 1/2(1/1.2 - 1/2.3)    

                         1/2.3.4 = 1/2(1/2.3 -1/3.4)  

Do đó:              M = 1/2(1/1.2-1/2.3 + 1/2.3 -1/3.4 + ... + 1/10.11 -1/11.12)

                           = 1/2(1/1.2 - 1/11.12) = 1/2(1/2-11/12 )      

                           = 1/2.65/132 = 65/264

Phức tạp lắm

14 tháng 3 2016

\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{10.11}-\frac{1}{11.12}\)

\(=\frac{1}{2}-\frac{1}{11.12}\)

 \(=\frac{65}{132}\)

14 tháng 3 2016

65/132

20 tháng 3 2018

Ta có :

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3}{1.2.3}-\dfrac{1}{1.2.3}=\dfrac{2}{1.2.3}\)

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4}{2.3.4}-\dfrac{2}{2.3.4}=\dfrac{2}{2.3.4}\)

...

Do đó :

\(\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\)

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\)

Vậy :

\(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+\dfrac{1}{3.4}-\dfrac{1}{4.5}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

19 tháng 5 2016

Giải:

Ta có nhận xét:

\(\frac{1}{1.2}-\frac{1}{2.3}=\frac{3-1}{1.2.3}=\frac{2}{1.2.3}\)

\(\frac{1}{2.3}-\frac{1}{3.4}=\frac{4-2}{2.3.4}=\frac{2}{2.3.4}\)

=>\(\frac{1}{1.2.3}=\frac{1}{3}\left(\frac{1}{1.2}-\frac{1}{2.3}\right)\)

\(\frac{1}{2.3.4}=\frac{1}{2}\left(\frac{1}{2.3}-\frac{1}{3.4}\right)\)

Do đó M=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}-\frac{1}{11.12}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{11.12}\right)=\frac{1}{2}-\frac{1}{11.12}\)

=\(\frac{1}{2}.\frac{65}{132}=\frac{65}{124}\)

Vậy M=65/124

19 tháng 5 2016

M=\(\frac{65}{124}\)

17 tháng 4 2017

Nhận xét rằng:
2/[(n - 1)n(n +1)] = 1/[(n-1).n] - 1/[n(n+1)]
Do đó
2M = 2/(1.2.3) + 2/(2.3.4) + 2/(3.4.5) + ... + 2(10.11.12)
= 1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + 1/(3.4) - 1/(4.5) + .... + 1/(10.11) - 1/(11.12)
= 1/(1.2) - 1/(11.12) = 65/132
=> M = 65/264

17 tháng 4 2017

Ta có nhận xét: \(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{3-1}{1.2.3}=\dfrac{2}{1.2.3}\),

\(\dfrac{1}{2.3}-\dfrac{1}{3.4}=\dfrac{4-2}{2.3.4}=\dfrac{2}{2.3.4};...\)

\(\Rightarrow\dfrac{1}{1.2.3}=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}\right)\);

\(\dfrac{1}{2.3.4}=\dfrac{1}{2}\left(\dfrac{1}{2.3}-\dfrac{1}{3.4}\right)\);...

Do đó \(M=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{1.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11.12}\right)\)

\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)

10 tháng 8 2016

M = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/10.11.12

M = 1/2.(2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/10.11.12)

M = 1/2.(1/1.2 - 1/2.3 + 1/2.3- 1/3.4 + 1/3.4 - 1/4.5 + ... + 1/10.11 - 1/11.12)

M = 1/2.(1/1.2 - 1/11.12)

M = 1/4 - 1/264

M = 65/264

9 tháng 3 2017

M=65/264.

30 tháng 3 2016

\(M=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{10.11}-\frac{1}{11.12}\)

\(M=\frac{1}{2}-\frac{1}{11.12}=\frac{65}{132}\)

26 tháng 9 2021

Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)

Áp dụng:

\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)

26 tháng 9 2021

sai rồi kìa

\(\dfrac{1}{1.2}-\dfrac{1}{2.3}=\dfrac{2}{1.2.3}\) mà