Cho tam giác ABC vuông tại A có AB=12cm, AC=16cm. Vẽ đường cao AH
a. CM: tam giác HBA đồng dạng với tam giác ABC
b. Tính Diện tích HBA / Diện tích HAC
c. Tia phân giác của góc B cắt AC và AH tại M và N, có HI//BN. CM: AN^2 = NI. NC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
Do đó: ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20(cm)
AH=12*16/20=9,6cm
HC=AC^2/BC=12,8cm
S AHC=1/2*9,6*12,8=61,44cm2
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó: ΔHBA đồng dạng với ΔABC
b: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=12^2+16^2=400\)
=>\(BC=\sqrt{400}=20\left(cm\right)\)
c: Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{3}{4}\)
=>\(S_{ABD}=\dfrac{3}{4}\cdot S_{ACD}\)
d: Ta có: \(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)
mà BD+CD=BC=20
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)
=>\(BD=\dfrac{20}{7}\cdot3=\dfrac{60}{7}\left(cm\right);CD=\dfrac{20}{7}\cdot4=\dfrac{80}{7}\left(cm\right)\)
e: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
=>\(AH\cdot20=12\cdot16=192\)
=>AH=192/20=9,6(cm)
a) Xét ΔHBAΔHBA và ΔABCΔABC có:
ˆAHB=ˆCAB=90∘AHB^=CAB^=90∘
ˆBB^ là góc chung
⇒ΔHBA∼ΔABC⇒ΔHBA∼ΔABC (g-g)
c) ΔABCΔABC có ADAD là đường phân giác, theo tính chất đường phân giác ta có:
⇒ABAC=DBDC=1216=34⇒ABAC=DBDC=1216=34
SΔABD=12⋅AH⋅BDSΔABD=12·AH·BD
SΔACD=12⋅AH⋅DCSΔACD=12·AH·DC
⇒SΔABDSΔACD=BDDC=34⇒SΔABDSΔACD=BDDC=34
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: BC=căn 9^2+12^2=15cm
BI là phân giác
=>AI/AB=CI/BC
=>AI/3=CI/5=12/8=1,5
=>AI=4,5cm
c: S HAB/S HCA=(AB/CA)^2
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
c: AD là phân giác
=>BD/CD=AB/AC=3/4
=>S ABD/S ACD=3/4
d: BD/CD=3/4
=>BD/3=CD/4
mà BD+CD=10
nên BD/3=CD/4=10/7
=>BD=30/7cm; CD=40/7cm
a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{ABC}\) chung
Do đó: ΔHBA\(\sim\)ΔABC(g-g)
b) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔHBA\(\sim\)ΔHAC(g-g)
Suy ra: \(\dfrac{HB}{HA}=\dfrac{HA}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AH^2=HB\cdot HC\)(đpcm)
a) Xét \(\Delta HBA\) và \(\Delta ABC\) có:
\(\widehat{B}\) là góc chung, \(\widehat{AHB}=\widehat{BAC}=90^o\)
=> \(\Delta HBA~\Delta ABC\) (g.g) (1)
b) Xét \(\Delta HAC\) và \(\Delta ABC\) có:
\(\widehat{C}\) là góc chung, \(\widehat{AHC}=\widehat{BAC}=90^o\)
=> \(\Delta HAC~\Delta ABC\) (g.g) (2)
Từ (1) và (2) suy ra \(\Delta HBA~\Delta HAC\)
=> \(\frac{S_{\Delta HBA}}{S_{\Delta HAC}}=\left(\frac{AB}{AC}\right)^2=\left(\frac{12}{16}\right)^2=\left(\frac{3}{4}\right)^2=\frac{9}{16}\)