\(\hept{\begin{cases}5x^2-4xy+2y^2\ge3\\7x^2+4xy+2y^2\le\frac{2b-1}{2b+5}\end{cases}.}\)
Tìm b để hệ bpt có nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải hệ:
\(\hept{\begin{cases}xy-y^2=\sqrt{3y-1}-\sqrt{x+2y-1}\\x^2y-4xy^2+7xy-5x-y+2=0\end{cases}}\)
\(x^2+y^2-2=0\Rightarrow x^2+y^2=2\) thay vào pt(1) dc:
\(5x^2y-4xy^2+3y^3-\left(x^2+y^2\right)\left(x+y\right)=0\)
\(\Leftrightarrow2y^3+4x^2y-5xy^2-x^3=0\)
\(\Leftrightarrow\left(y^3-x^3\right)+\left(y^3+4x^2y-5xy^2\right)=0\)
\(\Leftrightarrow\left(y-x\right)^2\left(2y-x\right)=0\)Ok....?
*)Cách khác
\(pt\left(1\right)-3y\left(x^2+y^2-2\right)=2\left(xy-1\right)\left(x-2y\right)=0\)
\(_{\hept{\begin{cases}x^2y+2y+x=4xy\\\frac{1}{x^2}+\frac{1}{xy}+\frac{x}{y}=3\left(2\right)\end{cases}}}\left(1\right)\)
Đk: x; y khác 0
(1) <=> \(x+\frac{2}{x}+\frac{1}{y}=4\Leftrightarrow\left(x+\frac{1}{x}\right)+\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (3)
(2) <=> \(\left(\frac{1}{x^2}+1\right)+\left(\frac{1}{xy}+\frac{x}{y}\right)=4\)
\(\Leftrightarrow\frac{\left(1+x^2\right)}{x^2}+\frac{\left(1+x^2\right)}{xy}=4\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(\frac{1}{x}+\frac{1}{y}\right)=4\) (4)
Từ (3) ; (4) ta có:
\(\hept{\begin{cases}x+\frac{1}{x}=2\\\frac{1}{x}+\frac{1}{y}=2\end{cases}}\Leftrightarrow x=y=1\)
Ta có:
\(\left(x-\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=2\)
\(\Leftrightarrow x^2y^2-2xy-1=0\)
Giải ra tìm được xy thế vô pt sau giải tiếp