K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔCHA vuông tại H và ΔCKB vuông tại K có

góc C chung

=>ΔCHA đồng dạng với ΔCKB

b: Xét ΔCAB có

AH,BK là đừog cao

AH cắt BK tại D

=>D là trực tâm

=>CD vuông góc AB tại E

góc CHA=góc CEA=90 độ

=>CHEA nội tiếp

=>góc BHE=góc BAC

mà góc HBE chung

nên ΔBEH đồng dạng với ΔBAC

c: góc KHD=góc ACE

góc EHA=góc KBA

mà góc ACE=góc KBA

nên góc KHD=góc EHD

=>HA là phân giác của góc EHK

DD
10 tháng 5 2022

Xét tam giác \(ABK\) và tam giác \(ACI\) ta có: 

\(\widehat{A}\) chung

\(\widehat{AKB}=\widehat{AIC}\left(=90^o\right)\)

Suy ra \(\Delta ABK~\Delta ACI\left(g.g\right)\)

suy ra \(\dfrac{AB}{AC}=\dfrac{AK}{AI}\Leftrightarrow\dfrac{AK}{AB}=\dfrac{AI}{AC}\).

19 tháng 6 2021

a) Ta có: \(\angle AKB=\angle AIB=90\Rightarrow AKIB\) nội tiếp

b) Trong (O) có DE là dây cung không đi qua O và M là trung điểm DE

\(\Rightarrow OM\bot DE\)

CEAD nội tiếp \(\Rightarrow\angle CED=\angle CAD\)

CEBD nội tiếp \(\Rightarrow\angle CDE=\angle CBE\)

mà \(\angle CAD=\angle CBE\) (AKIB nội tiếp)

\(\Rightarrow\angle CED=\angle CDE\Rightarrow\Delta CDE\) cân tại C mà M là trung điểm DE

\(\Rightarrow CM\bot DE\Rightarrow C,O,M\) thẳng hàng

c) AKIB nội tiếp \(\Rightarrow\angle IKB=\angle IAB=\angle DAB=\angle DEB\)

\(\Rightarrow\) \(IK\parallel DE\)

 

undefined

19 tháng 6 2021

thank :)

31 tháng 3 2023

giúp mình với các bạn mình đang cần gấp ạ

 

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

CD là phângíac

=>AD/AC=DB/CB

=>AD/3=DB/5=(AD+DB)/(3+5)=8/8=1

=>AD=3cm; BD=5cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔCHM vuông tại H và ΔCKB vuông tại K có

góc HCM chung

=>ΔCHM đồng dạng với ΔCKB

=>CH/CK=CM/CB

=>CH*CB=CK*CM

13 tháng 6 2023

giải

tự vẽ hình nha 

a, xét △ ABC và △ HBA có 

góc B chung

góc BHA = góc BAC = 90 độ

➜ △ABC ∼ △HBA (g.g)

b, xét △CHM và △CKB có

góc C chung

góc CHM = góc CKB 

➜ △CHM ∼ △CKB (g.g)

c, xét △DHB và △CKB có

góc B chung 

góc BKC = góc BHD =  90 độ 

➜ △DHB∼△CKB (g.g)

vì △DHB∼△CKB 

➜DH/CK = HB/KB = DB/CB

xét △BKH và △BCD có 

góc B chung 

HB/KB = DB/CB (CMT)

➜△BKH ∼ △BCD

vì △BKH ∼ △BCD nên góc BKH = góc BCD (hai góc tương ứng )

a: Xét tứ giác AKIB có

góc AKB=góc AIB=90độ

=>AKIB là tứ giác nội tiếp

b: góc BHD=góc AHE=90 độ-góc HAC=90 độ-1/2*sđ cung CD

góc BDH=90 độ-góc IBD=90 độ-1/2*sđ cung CD

=>góc BHD=góc BDH

=>ΔBHD cân tại B