Tìm 2 số tự nhiên a và b biết ( 23a +5b6) chia hết cho 9 và a-b=3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 nếu chia hết cho 3 thì 7a5b1 thì \(\frac{7a5b1}{3}=\frac{\left(7+5+1+a+b\right)}{3}=\frac{13+\left(a+b\right)}{3}\)
\(\Rightarrow a+b=2;5;8\)
\(a+b=2\left(loại\right)\)(hiệu k thể > hơn tổng)
\(a+b=5\left(loại\right)\)(vì để tìm \(\frac{b:\left(5-4\right)}{2}=0,5\)mà a và b là số tự nhiên =>a+b=8
\(a=\frac{8+4}{2}=6\)\(b=6-4=2\)
Vậy số cần tìm là 76521
Vì a chia hết cho 3 => a2 chia hết cho 9
Vì b chia hết cho 3 => b2 chia hết cho 9
Vì a, b chia hết cho 3 => ab chia hết cho 3.3 = 9
=> a2 + ab + b2 chia hết cho 9
1: a chia 3 dư 2 nên a=3k+2
4a+1=4(3k+2)+1
=12k+8+1
=12k+9=3(4k+3) chia hết cho 3
2:
a: 36 chia hết cho 3x+1
=>\(3x+1\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36\right\}\)
mà x là số tự nhiên
nên 3x+1 thuộc {1;4}
=>x thuộc {0;1}
b: 2x+9 chia hết cho x+2
=>2x+4+5 chia hết cho x+2
=>5 chia hết cho x+2
=>x+2 thuộc {1;-1;5;-5}
=>x thuộc {-1;-3;3;-7}
mà x thuộc N
nên x=3
Bài 1 :
a)
Ta có: 87ab ⋮ 9 ⇔ (8 + 7 + a + b) ⁝⋮ 9 ⇔ (15 + a + b) ⋮ 9
Suy ra: (a + b) ∈ {3; 12}
Vì a – b = 4 nên a + b > 3. Suy ra a + b = 12
Thay a = 4 + b vào a + b = 12, ta có:
b + (4 + b) = 12 ⇔ 2b = 12 – 4
⇔ 2b = 8 ⇔ b = 4
a = 4 + b = 4 + 4 = 8
Vậy ta có số: 8784.
b)
⇒ (7+a+5+b+1) chia hết cho 3
⇔ (13+a+b) chia hết cho 3
+ Vì a, b là chữ số, mà a-b=4
⇒ a,b ∈ (9;5) (8;4) (7;3) (6;2) (5;1) (4;0).
Thay vào biểu thức 7a5b1, ta được :
ĐA 1: a=9; b=5.
ĐA 2: a=6; b=2.
Bài 2 :
Đáp án là B
Vì a18b chia hết cho cả 2 và 5 nên b = 0 , ta được số a180
Vì a180 chia hết cho cả 3 và 9 nên hay
Mà a ≠ 0 ⇒ a = 9
Vậy số cần tìm là 9180
ta có :
23a+5b6 chia hết cho 9 thì \(2+3+a+5+b+6\text{ chia hết cho 9 hay }a+b+16\text{ chia hết cho 9}\)
vậy a+b =2 hoặc a+b= 11
mà a-b=3 nên ta có : a=7 b=4