K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2019

\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)

\(\Rightarrow\) Phải có ít nhât 1 số âm

Mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge0\end{cases}}\Leftrightarrow x,y\in\left\{\varnothing\right\}\)

9 tháng 4 2019

Đáp Án : X : 4 ; 3 ; 0 ; -1                           

                Y: 2 ; 1 ; 4 ; 5                             

                      ~Nguyên~                            

3 tháng 7 2016

Ta có:\(\left(x-2\right)^2.\left(y-3\right)^2=-4\)

\(\Rightarrow\left[\left(x-2\right).\left(y-3\right)\right]^2=-4\)

Lại có:\(VP< 0\) mà \(VT\ge0\)

nên ko có x,y thỏa mãn

3 tháng 7 2016

Không tìm được 

7 tháng 3 2020

1, Có (x-2)2\(\ge\)0

(y-2)2\(\ge\)0

=>(x-2)2.(y-3)2\(\ge\)0

Mà (x-2)2.(y-3)2=-4

Vậy không có x, y thỏa mãn

7 tháng 3 2020

Có 111...1=11.1010...01

Vậy số 111...1(2002 số 1) sẽ chia hết cho 11 nên nó sẽ là hợp sô

(phần này hơi sơ sài nên có cái gì phải hỏi luôn

NV
10 tháng 1 2021

\(x^3+y^3+3xy\left(x+y\right)+\dfrac{1}{27}-3xy\left(x+y\right)-xy=0\)

\(\Leftrightarrow\left(x+y\right)^3+\dfrac{1}{27}-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow\left(x+y+\dfrac{1}{3}\right)\left[\left(x+y\right)^2-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}\right]-3xy\left(x+y+\dfrac{1}{3}\right)=0\)

\(\Leftrightarrow x^2+y^2-xy-\dfrac{1}{3}\left(x+y\right)+\dfrac{1}{9}=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-\dfrac{1}{3}\right)^2+\left(y-\dfrac{1}{3}\right)^2=0\)

\(\Leftrightarrow x=y=\dfrac{1}{3}\Rightarrow P=...\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

29 tháng 5 2018

Ta có: \(\hept{\begin{cases}\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\\3-\left(y+2\right)^2\le3\end{cases}}\)

\("="\Leftrightarrow\hept{\begin{cases}-2\le x\le1\\y=-2\end{cases}}\)

4 tháng 11 2017

Cô Huyền giải nhầm rồi.

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow y^2+\left(y+1\right)^2=x^4+\left(x+1\right)^4\)

\(\Leftrightarrow y^2+y=x^4+2x^3+3x^2+2x\)

\(\Leftrightarrow y^2+y+1=\left(x^2+x\right)^2+2\left(x^2+x\right)+1=\left(x^2+x+1\right)^2\)là số chính phương

Xét \(y\ge0\)

\(\Rightarrow y^2< y^2+y+1\le\left(y+1\right)^2\)

\(\Rightarrow y^2+y+1=\left(y+1\right)^2\)

\(\Leftrightarrow y=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Tương tự cho trường hợp còn lại

3 tháng 11 2017

\(\left(x+1\right)^4-\left(y+1\right)^2=y^2-x^4\)

\(\Leftrightarrow x^4+2x^2+1-y^2-2y-1=y^2-x^4\)\(\Leftrightarrow2x^4+2x^2-2y^2-2y=0\)

\(\Leftrightarrow x^4+x^2-y^2-y=0\Leftrightarrow\left(x^4-y^2\right)+\left(x^2-y\right)=0\)

\(\Leftrightarrow\left(x^2-y\right)\left(x^2+y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-y=0\\x^2+y+1=0\end{cases}}\)

TH1: y = x2 . Vậy ta có cặp (x;y) thỏa mãn là (k; k2) (k là số nguyên)

TH2: y = - x2 - 1. Vậy ta có cặp (x;y) thỏa mãn là (k; - k2 - 1) (k là số nguyên)