cho M = \(\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+....+\frac{1}{9177}\). so sánh M với \(\frac{1}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1/1.3.5 +1/3.5.7+...................+1/19.21.23
---> 4S=4/1.3.5 + 4/ 3.5.7 +.........................+4/19.21.23
= (1/1.3 -1/3.5 ) + ( 1/3.5 -1/3.7) +...................................+(1/... -1/21.23 )
= 1/1.3 -1/21.23
= 1/3 -1/483 =160/483
----> S = 160/483 : 4 = 160 / 1932
(em tự rút gọn nhé! )S=1/1.3.5 +1/3.5.7+...................+1/19.21.23
---> 4S=4/1.3.5 + 4/ 3.5.7 +.........................+4/19.21.23
= (1/1.3 -1/3.5 ) + ( 1/3.5 -1/3.7) +...................................+(1/... -1/21.23 )
= 1/1.3 -1/21.23
= 1/3 -1/483 =160/483
----> S = 160/483 : 4 = 160 / 1932
(em tự rút gọn nhé! )
M=1/1.3.5 +1/3.5.7+.....+1/19.21.23
4M=4/1.3.5 + 4/ 3.5.7 +...+4/19.21.23
= (1/1.3 -1/3.5 ) + ( 1/3.5 -1/3.7) +....+(1/19.21 -1/21.23 )
= 1/1.3 -1/21.23
= 1/3 -1/483
=160/483
⇒ S = 160/483 : 4
= 160 / 1932
=40/438
a: \(M=\dfrac{631}{315}\cdot\dfrac{1}{651}-\dfrac{1}{105}\cdot\dfrac{2603}{651}-\dfrac{4}{315\cdot651}+\dfrac{4}{105}\)
\(=\dfrac{1}{315\cdot651}\cdot\left(631-4\right)-\dfrac{1}{105}\left(\dfrac{2603}{651}-4\right)\)
\(=\dfrac{1}{105}\cdot\dfrac{1}{1953}\cdot627+\dfrac{1}{105\cdot651}\)
\(=\dfrac{1}{105\cdot651}\left(\dfrac{1}{3}\cdot627+1\right)=\dfrac{1}{105\cdot651}\cdot210=\dfrac{2}{651}\)
b: \(N=\dfrac{1095}{547}\cdot\dfrac{3}{211}-\dfrac{546}{547\cdot211}-\dfrac{4}{547\cdot211}\)
\(=\dfrac{1}{547\cdot211}\left(1095\cdot3-546-4\right)\)
\(=\dfrac{1}{547\cdot211}\cdot2735=\dfrac{5}{211}\)
\(M=\frac{1}{15}+\frac{1}{105}+\frac{1}{315}+...+\frac{1}{9177}\)
\(M=\frac{1}{1.3.5}+\frac{1}{3.5.7}+\frac{1}{5.7.9}+...+\frac{1}{19.21.23}\)
\(M=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{19.21}-\frac{1}{21.23}\right)\)
\(M=\frac{1}{4}\left(\frac{1}{1.3}-\frac{1}{21.23}\right)< \frac{1}{4}.\frac{1}{1.3}=\frac{1}{12}\)
\(\Rightarrow M< \frac{1}{12}\)