tính S=3+3/2+3/2^2+3/2^3+...+3/2^10
giúp mk nha
cho mk hỏi viết ps và số mũ ntn vậy
thanks
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Rightarrow2S=6+\frac{3}{1}+\frac{3}{2}+...+\frac{3}{2^8}\)
\(\Rightarrow2S-S=\left(6+3+\frac{3}{2}+...+\frac{3}{2^8}\right)-\left(3+\frac{3}{2}+...+\frac{3}{2^9}\right)\)
\(\Rightarrow S=3-\frac{3}{2^9}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}\)
\(\Rightarrow\frac{1}{2}.S=\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\)
\(\Rightarrow S-\frac{1}{2}.S=\frac{1}{2}.S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^9}-\left(\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+...+\frac{3}{2^{10}}\right)\)
\(\Rightarrow\frac{1}{2}.S=3-\frac{3}{2^{10}}\)
\(\Rightarrow S=6-\frac{6}{2^{10}}\)
\(3^{2^{3^2}}=9^6\)
\(2^{3^{2^3}}=8^6\)
Vì \(9^6>8^6\)
\(\Rightarrow3^{2^{3^2}}>2^{3^{2^3}}\)
3^2^3^2<2^3^2^3
chắc zậy mà mink cũng ko chắc đâu nha!!!
Lời giải:
$3^{n+2}-2^{n+2}+3^n-2^n=9.3^n-4.2^n+3^n-2^n$
$=(9.3^n+3^n)-(4.2^n+2^n)=10.3^n-5.2^n$
$=10.3^n-10.2^{n-1}=10(3^n-2^{n-1})\vdots 10$ với mọi $n\in\mathbb{N}^*$
bn ấn vào cái hình có chữ M nằm ngang rồi viết lạ đề đc ko bn viết số mũ bn nhấn vào cái có chữ x rồi có cái hình vuông màu xám ở trên chữ x
\(a,S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}-3^{97}+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+...+3^{96}\left(1-3+3^2-3^3\right)\)
\(=\left(1-3+3^2-3^3\right)\left(1+3^4+...+3^{92}+3^{96}\right)\)
\(=-20.\left(1+3^4+...+3^{92}+3^{96}\right)\)là bội của -20
b, \(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)
\(3S=3-3^2+3^3-3^4+...+3^{99}-3^{100}\)
\(3S+S=1-3^{100}\)
\(S=\frac{1-3^{100}}{4}\)
Do S chia hết cho -20 nên S chia hết cho 4 do đó 1-3^100 chia hết cho 4 suy ra 3^100 chia 4 dư 1
bấm và chữ M ngược là đc
\(S=3+\frac{3}{2}+\frac{3}{2^2}+\frac{3}{2^3}+..\frac{3}{2^{10}}\)
\(\Leftrightarrow2S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}\)
\(\Leftrightarrow2S-S=6+3+\frac{3}{2}+\frac{3}{2^2}+..\frac{3}{2^9}-3-\frac{3}{2}-\frac{3}{2^2}-\frac{3}{2^3}-...-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=6-\frac{3}{2^{10}}\)
\(\Leftrightarrow S=\frac{6144}{1024}-\frac{3}{1024}\)
\(\Leftrightarrow S=\frac{6141}{1024}\)