Chứng minh rằng :
a) Nếu a ≤ b thì -2a+3 ≥ -2b+3
b) Nếu a > b thì 2a-5 > 2b-5
c) Nếu a > b thì 5a > 5b-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n(n+1)(n+2)
nhận xét :
n; n+1; n+2 là 3 số tự nhiên liên tiếp
=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3 (1)
ƯCLN(2;3) = 1 (2)
(1)(2) => n(n+1)(n+2) \(⋮\) 6
b, 3a + 5b \(⋮\) 8
=> 5(3a + 5b) \(⋮\) 8
=> 15a + 25b \(⋮\) 8
3(5a + 3b) = 15a + 9b
xét hiệu :
(15a + 25b) - (15a + 9b)
= 15a + 25b - 15a - 9b
= (15a - 15a) + (25b - 9b)
= 0 + 16b
= 16b và (3;5) = 1
=> 5a + 3b \(⋮\) 8
c, làm tương tự câu b
Vì \(:a>b\) nên \(2a>2b\)
\(\rightarrow2a-1>2b-1\)
\(\rightarrow2a-1+1>2b-1+1\)
\(\rightarrow2a-1+1>2b-1+1-1\)
\(\rightarrow2a>2b-1\)
\(\rightarrowĐPCM\)
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^
Ta có: A = a4 + b4 + c4 - 2a2b2 - 2b2c2 - 2a2c2 = (a2)2 + (b2)2 + (c2)2 + 2a2b2 - 2b2c2 - 2a2c2 + 4a2b2 = (a2 + b2 - c2)2 - 4a2b2
= (a2 + b2 - c2 - 2ab).(a2 + b2 - c2 + 2ab) (1)
Vì a; b;c là 3 cạnh của tam giác nên c > |a - b| => c2 > (|a - b|)2 = (a - b)2
=> c2 > a2 + b2 - 2ab => a2 + b2 - c2 - 2ab < 0 (2)
lại có : a+ b > c => (a+ b) 2 > c2 => a2 + b2 - c2 + 2ab > 0 (3)
Từ (1)(2)(3) => A < 0 => đpcm
a: 3a+2b>=3b+2a
=>3a-2a>=3b-2b
=>a>=b(đúng)
b: =>a^2-2ab+b^2<=2a^2+2b^2
=>2a^2+2b^2-a^2+2ab-b^2>=0
=>(a+b)^2>=0(luôn đúng)
c: =>5a^2+5b^2>=4a^2-4ab+b^2
=>a^2+4ab+4b^2>=0
=>(a+2b)^2>=0(luôn đúng)
a) vì a≤ b
Nhân cả 2 vế của BĐT với -2
=> -2a≥ -2b
Cộng cả 2 vế của BĐT với 3
=> -2a+3 ≥ -2b+3
b) vì a>b
Nhân cả 2 vế với 2
=> 2a>2b
Cộng cả 2 vế với (-5)
=> 2a -5> 2b-5
c) vì a>b
Nhân cả 2 vế với 5
=> 5a>5b (1)
Vì 0> -1
Cộng cả 2 vế với 5b
=> 5b> 5b -1 (2)
Từ (1) và (2) => 5a> 5b-1
a/ a ≤ b =>-2a ≥ -2b => -2a+3 ≥ -2b+3
b/ a > b => 2a > 2b => 2a-5 > 2b-5
c/ a > b => 5a > 5b
0 > -1
=> 5a + 0 > 5b + (-1)
<=> 5a > 5b -1