Cho (100a+10b+c) x (a+b+c)=1926 trong đó có a,b,c là các số nguyên.Tinh a+b+c
Ai làm đung và nhanh nhất mỗi ngày mình tick 1 lần mình hứa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overline{abc}-\left(a+b+c\right)=100a+10b+c-a-b-c=99a+9b=9\left(11a+b\right)⋮9\)
các tập hợp con có 2 phần tử:
A = \(\hept{ }a;b\) B= (b;c) C = (a;c)
\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)
\(\frac{b}{a+c}>\frac{b}{a+b+c}\)
\(\frac{c}{a+b}>\frac{c}{a+b+c}\)
\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
Vậy M>1 (1) (Đề sai )
b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\)
\(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)
\(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)
\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)
=>M<2 (2)
+)Từ (1) và (2)
=>M không phải là ssoos nguyên
Chúc bạn học tốt