một số nguyên dương N có đúng 12 ước số ( dương ) khác nhau kể cả chính nó và 1 , nhưng chỉ có 3 ước số nguyên tố khác nhau . Giả sử tổng của các ước số nguyên tố là 20 tính giá trị nhỏ nhất có thể có của N
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
ML
12 tháng 1 2022
câu 11:A
câu 12:A
câu 13: hình như sai đáp án, phải là 3 mũ chứ ko phải là 32 ở đáp án b đó
câu 14: C
mình tạm thời chỉ trả lời vậy thui, mình đang học
Gọi các ước nguyên tố của số N là p ; q ; r và p < q < r
\(\Rightarrow p=2;q+r=18\Rightarrow\orbr{\begin{cases}q=5;r=13\\q=7;r=11\end{cases}\Rightarrow\orbr{\begin{cases}N=2^a.5^b.13^c\\N=2^a.7^b.11^c\end{cases}}}\)
Với a ; b; c \(\in\)N và \(\left(a+1\right)\left(b+1\right)\left(c+1\right)=12\Rightarrow12=2.2.3\)
Do đó N có thể là \(2^2.5.13;2.5^2.13;2.5.13^2;2^2.7.11;2.7^2.11;2.7.11^2\)
N nhỏ nhất nên \(N=2^2.5.13=260\)