Cho 100 số nguyên dương 1;2;3;...;100. Chứng minh rằng không thể chia số này thành nhóm các số sao cho trong mỗi nhóm số lớn nhất bằng ba lần tổng của các số còn lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo bài tương tự tại link trên nhé.
const
fi='sochinhphuong.inp';
fo='sochinhphuong.out';
var f,g:text;n:longint;
function scp(n:longint):boolean;
begin
if (sqr(trunc(sqrt(n)))=n) then exit (true);
exit (false);
end;
begin
assign(f,fi);reset(f);
assign(g,fo);rewrite(g);
readln(f,n);
if scp(n) then writeln(g,'yes') else
writeln(g,'no');
close(f);close(g);
end.
Bài giải
Vì tích của 3 số nguyên bất kì luôn là 1 số dương
=> Ta có thể chia thành 33 cặp số dương có 3 số bất kì và thừa ra 1 số dương
Mà dương nhân dương luôn bằng dương
=> tích của 100 số nguyên bất kì là số dương
Vậy tích của 100 số nguyên bất kì là số dương
Lấy 3 số bất kì trong 100 số nguyên.
Theo bài ra tổng 3 số đó là một số nguyên âm
=> Trong 3 số sẽ có ít nhất 1 số là số nguyên âm.
Giả sử số đó là số b<0 . Như vậy còn lại 99 số.
Gọi 99 số đó là:
\(a_1;a_2;a_3;a_4;...;a_{99}\)
Ta có: \(\left(a_1+a_2+a_3\right)< 0;...;\left(a_{97}+a_{98}+a_{99}\right)< 0\) và có 33 cặp như trên
=> \(\left(a_1+a_2+a_3\right)+...+\left(a_{97}+a_{98}+a_{99}\right)< 0\)
=> \(\left(a_1+a_2+a_3\right)+...+\left(a_{97}+a_{98}+a_{99}\right)+b< 0\)
=> \(a_1+a_2+a_3+...+a_{97}+a_{98}+a_{99}+b< 0\)
Như vậy tổng của 100 số đã cho là số nguyên âm.