Rút gọn biểu thức sau:
\(S=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^n}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{x^2-1}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left(\frac{x+1}{2\left(x-1\right)}+\frac{3}{\left(x-1\right)\left(x+1\right)}-\frac{x+3}{2\left(x+1\right)}\right)\frac{4x^2-4}{5}\)
\(=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{6}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\frac{4x^2-4}{5}\)
\(=\left(\frac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x-1\right)\left(x+1\right)}\right)\frac{4\left(x^2-1\right)}{5}\)
\(=\frac{10}{2\left(x-1\right)
\left(x+1\right)}.\frac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=4\)
Vậy giá trị của biểu thức là 4
\(S=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^n}\)
\(\Rightarrow3S=3+1+\frac{1}{3}+...+\frac{1}{3^{n-1}}\)
\(\Rightarrow3S-S=3-\frac{1}{3^n}\)
\(\Rightarrow2S=\frac{3^{n+1}-1}{3^n}\)
\(\Rightarrow S=\frac{3^{n+1}-1}{2\cdot3^n}\)