Cho a b là các số tự nhiên khác 0 biết a và b nguyên tố cùng nhau chứng minh rằng phân số a nhân b phần a mũ 2 + b mũ 2 là phân số tối giản
Nhanh tick 3 tick
Thề kh thất hứa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(VT=1+\frac{1}{n^2}+\frac{1}{\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{\left(n+1\right)^2}{n^2\left(n+1\right)^2}+\frac{n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{n^2\left(n+1\right)^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+\left(n+1\right)^2+n^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+n^2+2n+1+n^2}{n^2\left(n+1\right)}\left(1\right)\)
\(VP=\frac{\left(n^2+n+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)+1\right]^2}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left[n\left(n+1\right)\right]}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2\left(n^2+1\right)}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+1+2n^2+2n}{n^2\left(n+1\right)^2}\)
\(=\frac{\left[n\left(n+1\right)\right]^2+2n+1+2n^2}{n^2\left(n+1\right)^2}\left(2\right)\)
Từ (1) và (2)
=>đpcm
Vì \(\sqrt{x}\)là một số hữu tỉ
\(\Rightarrow\sqrt{x}\)có dạng \(\frac{a}{b}\)(\(\frac{a}{b}\)là một phân số tối giản)
Vì \(\sqrt{x}\ge0\)và theo đề bài \(\frac{a}{b}\ne0\Rightarrow\frac{a}{b}\ge0\)
\(\Rightarrow a,b\)là những số nguyên dương (1)
Vì \(\sqrt{x}\)có dạng \(\frac{a}{b}\Rightarrow\left(\sqrt{x}\right)^2=\left(\frac{a}{b}\right)^2\Rightarrow x=\frac{a^2}{b^2}\)(2)
Vì \(\frac{a}{b}\)là phân số tối giản
\(\Rightarrow a,b\)là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(a,b)=1
Vì \(a^2\) có Ư(a), \(b^2\)có Ư(b)
\(\Rightarrow a^2,b^2\) là hai số nguyên tố cùng nhau
\(\Rightarrow\)ƯCLN(\(a^2,b^2\))=1
\(\Rightarrow\frac{a^2}{b^2}\) là phân số tối giản (3)
Từ (1), (2) và (3)
=>đpcm
b) n mũ 2 + 2006 là hợp số
hai câu còn lại ko bt
Hok tốt
^_^
\(a^2+c^2=b^2+d^2\)
\(\Leftrightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)⋮2\)
Ta có
\(a^2+b^2+c^2+d^2+\left(a+b+c+d\right)=\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta thấy
\(a\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của 2 số TN liên tiếp nên chúng chia hết cho 2
\(\Rightarrow a^2+b^2+c^2+d^2+\left(a+b+c+d\right)⋮2\)
Mà \(a^2+b^2+c^2+d^2⋮2\left(cmt\right)\)
\(\Rightarrow a+b+c+d⋮2\)
Mà a+b+c+d là các số TN khác 0 => a+b+c+d>2
=> a+b+c+d là hợp số
A = [(a +b) + (c + d)].[(a + b) + (c + d)]
A = (a + b).(a + b) + (a +b).(c + d) + (c + d).(a + b) + (c+d).(c+d)
A = a2 + ab + ab + b2 + 2.(a+b).(c+d) + c2 + cd + cd + d2
A = a2 + b2 + c2 + d2 + 2ab + 2.(a +b).(c + d) + 2cd
A = a2 + b2 + a2 + b2 + 2. [ab + (a + b).(c + d) + cd]
A = 2.(a2 + b2) + 2.[ab + (a + b)(c + d) + cd]
⇒ A ⋮ 2 ⇒ a + b + c + d ⋮ 2 mà a; b;c;d là số tự nhiên nên a + b + c + d > 2
Hay A ⋮ 1; 2; A vậy A là hợp số (đpcm)