Cho \(\int\limits^2_1\frac{ln\left(1+2x\right)}{x^2}dx=\frac{a}{2}.ln5+b.ln3+c.ln2\) , với a,b,c là các số nguyên. tính giá trị của a + 2(b+c).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(\int\limits^e_1\left(x+\frac{1}{x}+\frac{1}{x^2}\right)dx=\left(\frac{x^2}{2}+lnx-\frac{1}{x}\right)|^e_1=\frac{e^2}{2}-\frac{1}{e}+\frac{3}{2}\)
2/ \(\int\limits^2_1\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)dx=\int\limits^2_1\left(x\sqrt{x}+1\right)dx=\int\limits^2_1\left(x^{\frac{3}{2}}+1\right)dx\)
\(=\left(\frac{2}{5}.x^{\frac{5}{2}}+x\right)|^2_1=\frac{8\sqrt{2}-7}{5}\)
3/
\(\int\limits^2_1\frac{2x^3-4x+5}{x}dx=\int\limits^2_1\left(2x^2-4+\frac{5}{x}\right)dx=\left(\frac{2}{3}x^3-4x+5lnx\right)|^2_1=\frac{2}{3}+5ln2\)
4/ \(\int\limits^2_1x^2\left(3x-1\right)\frac{2}{x}dx=\int\limits^2_1\left(6x^2-2x\right)dx=\left(2x^3-x^2\right)|^2_1=11\)
Câu a)
\(I=\int ^{1}_{0}\frac{x(e^x+1)+1}{e^x+1}dx=\int ^{1}_{0}xdx+\int ^{1}_{0}\frac{dx}{e^x+1}\)
\(=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2}{2}+\int ^{1}_{0}\frac{d(e^x)}{e^x(e^x+1)}=\frac{1}{2}+\left.\begin{matrix} 1\\ 0\end{matrix}\right|\ln\left | \frac{e^x}{e^x+1} \right |\)
\(\Leftrightarrow I=\frac{3}{2}+\ln 2-\ln (e+1)\)
Câu d)
\(I=\int ^{e}_{1}\ln(x+1)d(x)=\int ^{e}_{1}\ln (x+1)d(x+1)\)
Đặt \(\left\{\begin{matrix} u=\ln (x+1)\\ dv=d(x+1)\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{d(x+1)}{x+1}\\ v=x+1\end{matrix}\right.\)
\(\Rightarrow I=\left.\begin{matrix} e\\ 1\end{matrix}\right|(x+1)\ln (x+1)-\int ^{e}_{1}d(x+1)\)
\(=(e+1)\ln \left ( \frac{e+1}{e} \right )-2\ln \left (\frac{2}{e}\right )\)
Câu b)
Đặt \(\tan \frac{x}{2}=t\). Ta có:
\(\left\{\begin{matrix} dt=d\left ( \tan \frac{x}{2} \right )=\frac{1}{2\cos ^2\frac{x}{2}}dx=\frac{t^2+1}{2}dx\rightarrow dx=\frac{2dt}{t^2+1}\\\ \cos x=\frac{1-t^2}{t^2+1}\end{matrix}\right.\)
\( I=\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{1}{1+\cos x}dx}_{A}+\underbrace{\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x)}{\cos x+1}}_{B}\)
Có \(B=\int ^{\frac{\pi}{2}}_{0}\frac{d(\cos x+1)}{\cos x+1}=\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\ln |\cos x+1|=-\ln 2\)
\(A=\int ^{1}_{0}\frac{2dt}{(t^2+1)\frac{2}{t^2+1}}=\int ^{1}_{0}dt=1\)
\(\Rightarrow I=A+B=1-\ln 2\)
Câu 1:
Đặt \(\sqrt{lnx+1}=t\Rightarrow lnx=t^2-1\Rightarrow\frac{dx}{x}=2tdt\)
\(\Rightarrow I=\int3t.2t.dt=6\int t^2dt=2t^3+C\)
\(=2\sqrt{\left(lnx+1\right)^3}+C=2\left(lnx+1\right)\sqrt{lnx+1}+C\)
\(=ln\left(x.e\right)^2\sqrt{ln\left(x.e\right)+0}\Rightarrow a=2;b=0\)
Câu 2:
\(\int\limits^b_ax^{-\frac{1}{2}}dx=2x^{\frac{1}{2}}|^b_a=2\left(\sqrt{b}-\sqrt{a}\right)=2\Rightarrow\sqrt{b}-\sqrt{a}=1\)
Ta có hệ: \(\left\{{}\begin{matrix}\sqrt{b}-\sqrt{a}=1\\a^2+b^2=17\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}b=4\\a=1\end{matrix}\right.\) (lưu ý loại cặp nghiệm âm do \(\frac{1}{\sqrt{x}}\) chỉ xác định trên miền (a;b) dương)
Câu 4:
\(\int\frac{3x+a}{x^2+4}dx=\frac{3}{2}\int\frac{2x}{x^2+4}dx+a\int\frac{1}{x^2+4}dx\)
\(=\frac{3}{2}ln\left(x^2+4\right)+\frac{a}{2}arctan\left(\frac{x}{2}\right)+C\)
\(\Rightarrow a=2\)
\(\Rightarrow I=\int\limits^{\frac{e}{4}}_1ln\left(x\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=lnx\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.lnx|^{\frac{e}{4}}_1-\int\limits^{\frac{e}{4}}_1dx=\frac{e}{4}.ln\left(\frac{e}{4}\right)-\frac{e}{4}+1=-\frac{ln\left(2^e\right)}{2}+1\)
Câu 5:
\(f'\left(x\right)=\int f''\left(x\right)dx=-\frac{1}{4}\int x^{-\frac{3}{2}}dx=\frac{1}{2\sqrt{x}}+C\)
\(f'\left(2\right)=\frac{1}{2\sqrt{2}}+C=2+\frac{1}{2\sqrt{2}}\Rightarrow C=2\)
\(\Rightarrow f'\left(x\right)=\frac{1}{2\sqrt{x}}+2\)
\(\Rightarrow f\left(x\right)=\int f'\left(x\right)dx=\int\left(\frac{1}{2\sqrt{x}}+2\right)dx=\sqrt{x}+2x+C_1\)
\(f\left(4\right)=\sqrt{4}+2.4+C_1=10\Rightarrow C_1=0\)
\(\Rightarrow f\left(x\right)=2x+\sqrt{x}\)
\(\Rightarrow F\left(x\right)=\int f\left(x\right)dx=\int\left(2x+\sqrt{x}\right)dx=x^2+\frac{2}{3}\sqrt{x^3}+C_2\)
\(F\left(1\right)=1+\frac{2}{3}+C_2=1+\frac{2}{3}\Rightarrow C_2=0\)
\(\Rightarrow F\left(x\right)=x^2+\frac{2}{3}\sqrt{x^3}\Rightarrow\int\limits^1_0\left(x^2+\frac{2}{3}\sqrt{x^3}\right)dx=\frac{3}{5}\)
Mình giải giúp b câu 1 này
Ở phần mẫu bạn biến đổi \(cos^2xsin^2x=\frac{1}{4}\left(4cos^2xsin^2x\right)=\frac{1}{4}sin^22x\)
Đặt t = sin2x => \(d\left(t\right)=2cos2xdx\)
Đổi cận \(x=\frac{\pi}{4}=>t=1\) \(x=\frac{\pi}{3}=>t=\frac{\sqrt{3}}{2}\)
Ta có biểu thức trên sau khi đổi biến và cận
\(\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{\frac{1}{2}dt}{\frac{1}{4}t^2}=\int\limits^{\frac{\sqrt{3}}{2}}_1\frac{2}{t^2}dt=\left(-\frac{2}{t}\right)\)lấy cận từ 1 đến \(\frac{\sqrt{3}}{2}\) \(=-\frac{2}{\frac{\sqrt{3}}{2}}-\left(-\frac{2}{1}\right)=2-4\frac{\sqrt{3}}{3}\) => a=2 và b=-4/3 vậy A=2/3 nhé
Câu 1)
Ta có:
\(I=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos 2x}{\cos^2 x\sin^2 x}dx=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{\cos^2x-\sin ^2x}{\cos^2 x\sin^2 x}dx\)
\(=\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\sin^2 x}-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}\frac{dx}{\cos ^2x}=-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\cot x)-\int ^{\frac{\pi}{3}}_{\frac{\pi}{4}}d(\tan x)\)
\(=-\left ( \frac{\sqrt{3}}{3}-1 \right )-(\sqrt{3}-1)=2-\frac{4}{3}\sqrt{3}\Rightarrow a+b=\frac{2}{3}\)
2a. Đề sai, nhìn biểu thức \(\dfrac{f'\left(x\right)}{f'\left(x\right)}dx\) là thấy
2b. Đồ thị hàm số không cắt Ox trên \(\left(0;1\right)\) nên diện tích cần tìm:
\(S=\int\limits^1_0\left(x^4-5x^2+4\right)dx=\dfrac{38}{15}\)
3a. Phương trình (P) theo đoạn chắn:
\(\dfrac{x}{4}+\dfrac{y}{-1}+\dfrac{z}{-2}=1\)
3b. Câu này đề sai, đề cho mặt phẳng (Q) rồi thì sao lại còn viết pt mặt phẳng (Q) nữa?
sorry thầy em xin sửa lại câu 3 b là
b) trong không gian Oxyz cho mặt phẳng (Q): 3x-y-2z+1=0.Viết phương trình mặt phẳng (P) song song với mặt phẳng (Q) và đi qua điểm M(0;0;1)
\(I=\int\limits^2_1\frac{ln\left(1+2x\right)}{x^2}dx\)
Đặt \(\left\{{}\begin{matrix}u=ln\left(1+2x\right)\\dv=\frac{dx}{x^2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{2}{1+2x}dx\\v=-\frac{1}{x}\end{matrix}\right.\)
\(\Rightarrow I=-\frac{1}{x}.ln\left(1+2x\right)|^2_1+\int\limits^2_1\frac{2dx}{x\left(2x+1\right)}=-\frac{1}{2}ln5+ln3+I_1\)
\(I_1=\int\limits^2_1\frac{4dx}{2x\left(2x+1\right)}=4\int\limits^2_1\left(\frac{1}{2x}-\frac{1}{2x+1}\right)dx=2ln\left(\frac{2x}{2x+1}\right)|^2_1=2ln2+2ln3-2ln5\)
\(\Rightarrow I=-\frac{5}{2}ln5+3ln3+2ln2\) \(\Rightarrow\left\{{}\begin{matrix}a=-5\\b=3\\c=2\end{matrix}\right.\) \(\Rightarrow a+2\left(b+c\right)=5\)