Tính tổng:
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{38}{25}+\frac{9}{10}-\frac{11}{15}+\cdot\cdot\cdot+\frac{197}{4851}-\frac{199}{4950}\)
\(\Rightarrow S=\frac{38}{25}+\frac{18}{20}-\frac{22}{30}+\cdot\cdot\cdot+\frac{394}{9702}-\frac{398}{9900}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{20}-\frac{11}{30}+\cdot\cdot\cdot+\frac{197}{9702}-\frac{199}{9900}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{9}{4\cdot5}-\frac{11}{5\cdot6}+\cdot\cdot\cdot+\frac{197}{98\cdot99}-\frac{199}{99\cdot100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\cdot\cdot\cdot-\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{1}{4}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\left(\frac{25}{100}-\frac{1}{100}\right)\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{24}{100}\)
\(\Rightarrow S=\frac{38}{25}+2\cdot\frac{6}{25}\)
\(\Rightarrow S=\frac{38}{25}+\frac{12}{25}\)
\(\Rightarrow S=\frac{50}{25}=2\)
\(A=\frac{88}{25}-2\left(\frac{9}{20}-\frac{11}{30}+\frac{13}{42}-.....-\frac{199}{9900}\right)\)
\(A=\frac{88}{25}-2\left(\frac{4+5}{4.5}-\frac{5+6}{5.6}+....-\frac{99+100}{99.100}\right)\)
\(A=\frac{88}{25}-2\left(\frac{1}{4}+\frac{1}{5}-\frac{1}{5}-\frac{1}{6}+\frac{1}{6}+....-\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{88}{25}-2\left(\frac{1}{4}-\frac{1}{100}\right)=\frac{88}{25}-\frac{1}{2}+\frac{1}{50}=\frac{176-25+1}{50}=\frac{152}{50}=\frac{76}{25}\)
Đặt A=\(\frac{13}{21}-\frac{15}{28}+\frac{17}{36}-...+\frac{197}{4851}-\frac{199}{4950}\)
\(\frac{A}{2}=\frac{13}{42}-\frac{15}{56}+\frac{17}{72}-...+\frac{197}{9702}-\frac{199}{4950}\)
\(=\frac{6+7}{6.7}-\frac{7+8}{7.8}+\frac{8+9}{8.9}-...+\frac{98+99}{98.99}-\frac{99+100}{99.100}\)
\(=\frac{1}{7}+\frac{1}{6}-\frac{1}{8}-\frac{1}{7}+\frac{1}{9}+\frac{1}{8}-...+\frac{1}{99}+\frac{1}{98}-\frac{1}{100}+\frac{1}{99}\)
\(=\frac{1}{6}-\frac{1}{100}=\frac{47}{300}\)
\(\Rightarrow A=\frac{47}{300}.2=\frac{47}{150}\)
\(\Rightarrow Q=\frac{85}{25}+\frac{9}{10}-\frac{11}{5}+\frac{47}{150}=\frac{181}{75}\)
Vậy Q=\(\frac{181}{75}\).
21)
\(\left(1+\dfrac{1}{3}\right).\left(1+\dfrac{1}{8}\right).\left(1+\dfrac{1}{15}\right).....\left(1+\dfrac{1}{9999}\right)\\ =\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{10000}{9999}\\ =\dfrac{2.2}{1.3}.\dfrac{3.3}{2.4}.\dfrac{4.4}{3.5}.....\dfrac{100.100}{99.101}\\ =\dfrac{2.3.4.....100}{1.2.3.....99}.\dfrac{2.3.4.....100}{3.4.5.....101}\\ =100.\dfrac{2}{101}\\ =\dfrac{200}{101}\)