Tính giá trị biểu thức :
A = 1^2/1x2 x 2^2/2x3 x 3^2/3x4 x 4^2/4x5
Các bạn trình bày cách giải hộ mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Đặt \(A=\frac{2}{1x2}+\frac{2}{2x3}+\frac{2}{3x4}+...+\frac{2}{18x19}+\frac{2}{19x20}\)
\(\frac{A}{2}=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{18x19}+\frac{1}{19x20}\)
\(\frac{A}{2}=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{19-18}{18x19}+\frac{20-19}{19x20}\)
\(\frac{A}{2}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)
\(A=\frac{2x19}{20}=\frac{19}{10}\)
Bài 2:
Đặt \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{8x9}+\frac{1}{9x10}\)
Làm tương tự câu 1 có \(B=1-\frac{1}{10}=\frac{9}{10}\)
\(Bx100=\frac{9}{10}x100=90\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]:\frac{1}{2}=1\)
=> \(\left[\frac{5}{2}:\left(x+\frac{206}{100}\right)\right]=\frac{1}{2}\)
=> \(x+\frac{206}{100}=\frac{5}{2}:\frac{1}{2}=5\Rightarrow x=5-\frac{206}{100}=\frac{294}{100}=\frac{147}{50}\)
Ta có : A = x2 - 4x + 1
=> A = x2 - 2.x.2 + 4 - 3
=> A = (x - 2)2 - 3
Mà : (x - 2)2 \(\ge0\forall x\in R\)
Nên : (x - 2)2 - 3 \(\ge-3\forall x\in R\)
Vậy GTNN của A là -3 khi x = 2
\(B=4x^2+4x+11=\left(2x\right)^2+2.2x.1+1+10=\left(2x+1\right)^2+10\)
Vì \(\left(2x+1\right)^2\ge0\Rightarrow B=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi (2x+1)2=0 <=> 2x+1=0 <=> x=-1/2
Vậy gtnn của B là 10 khi x=-1/2
---
\(C=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-36\ge-36\)
Dấu "=" xảy ra khi x=0 hoặc x=-5
Ta có: \(S=\left(5-\frac{2}{3}+\frac{3}{2}\right)-\left(7-\frac{5}{4}-\frac{1}{2}\right)-\left(1-\frac{4}{3}+\frac{2}{5}\right).\)
\(\Rightarrow S=\left(\frac{13}{3}+\frac{3}{2}\right)-\left(\frac{23}{4}-\frac{1}{2}\right)-\left(\frac{-1}{3}+\frac{2}{5}\right)\)
\(\Rightarrow S=\frac{35}{6}-\frac{21}{4}-\frac{1}{15}\)
\(\Rightarrow S=\frac{7}{12}-\frac{1}{15}=\frac{31}{60}\)
Vậy \(S=\frac{31}{60}\)
a. P=2010-(x+1)^2008
(x+1)^2008>_0
<=> -(x+1)^2008<_0
<=>2010-(x+1)^2008<_2010
Vậy GTLN là 2010
b.1010-|3-x|
|3-x| >_0
<=> -|3-x| <_0 <=> 1010-|3-x| <_1010
Vậy GTLN là 1010
A=12/1.2 .22/2.3 .32/3.4 .42/4.5
=1/2. 2.2/2.3 .3.3/3.4 .4.4/4.5
=1/2.2/3.3.4.4./5
=1/5