K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2019

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=2-\frac{1}{n+3}\)

Để A có giá trị là số nguyên 

=> 1 chia hết cho n + 3

=> \(n+3\inƯ\left(1\right)\)

=> \(n+3\in\left\{1;-1\right\}\)

=> \(n\in\left\{-2;-4\right\}\)

Vậy A có giá trị là số nguyên khi n = -2 hoặc n = -4

22 tháng 4 2019

để A nguyên \(\Rightarrow2n+5⋮n+3\)

\(\Rightarrow\left(2n+6\right)-1⋮n+3\)

\(\Rightarrow n+3\text{là}Ư_1\in\left\{\pm1\right\}\)

Ta có bảng sau
\(n+3\)1-1
\(n\)-2-4

      Vậy \(n\in\left\{-2;-4\right\}\)

20 tháng 4 2021

\(A=\frac{2n+5}{n+3}=\frac{2n+6-1}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để A nguyên thì 1/n+3 nguyên

hay n + 3 thuộc Ư(1) = { 1 ; -1 ]

=> n thuộc { -2 ; -4 } thì A nguyên

22 tháng 1

a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2

=> (n - 2) + 3 ⋮ n - 2

 Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2

=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}

 => n ∈ {-1;1;3;5}

b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1

=> (4n - 2) + 7 ⋮ 2n - 1

=> 2(2n - 1) + 7 ⋮ 2n - 1

 Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1

=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}

=> n ∈ {-3;0;1;4}

1 tháng 9 2016

a/ Gọi ƯCLN(2n+5,n+3) = d \(\left(d\ge1\right)\)

Ta có : \(\begin{cases}2n+5⋮d\\n+3⋮d\end{cases}\) \(\Rightarrow\begin{cases}2n+5⋮d\\2n+6⋮d\end{cases}\)

\(\Rightarrow\left(2n+6\right)-\left(2n+5\right)⋮d\Rightarrow1⋮d\Rightarrow d\le1\)

mà \(d\ge1\Rightarrow d=1\)

Từ đó có đpcm

 

1 tháng 9 2016

Ta có \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Để B là số nguyên thì \(n+3\inƯ\left(1\right)\)

Xét các trường hợp sẽ ra

17 tháng 9 2017

a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)

\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)

\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)

*\(n+3=1\Rightarrow n=-2\)

*\(n+3=-1\Rightarrow n=-4\)

*\(n+3=11\Rightarrow n=8\)

*\(n+3=-11\Rightarrow n=-14\)

30 tháng 7 2018

A=\(\frac{2n+5}{n-3}\)=\(\frac{n-3+n+8}{n-3}\)=\(1+\frac{n+8}{n-3}\)=\(1+\frac{n-3+11}{n-3}\)=\(2+\frac{11}{n-3}\) Đk \(n\ne3\)

\(2\in Z\)nên \(\frac{11}{n-3}\in Z\)\(\Rightarrow n-3\inƯ\left(11\right)=\left(1;-1;11;-11\right)\)

+)\(n-3=1\Leftrightarrow n=4\)(TM đk)

+)\(n-3=-1\Leftrightarrow n=2\)(TM đk)

+)\(n-3=11\Leftrightarrow n=14\)(TMđk)

+)\(n-3=-11\Leftrightarrow n=-8\)(TM đk)

Vậy x={4;2;14;-8} thì A\(\in\)Z

30 tháng 7 2018

ĐK: \(n\ne3\)

\(A=\frac{2n-5}{n-3}=\frac{2n-3-2}{n-3}=\frac{2n-3}{n-3}-\frac{2}{n-3}\)\(=2-\frac{2}{n-3}\)

Để \(A\inℤ\Leftrightarrow2-\frac{2}{n-3}\inℤ\Leftrightarrow\frac{2}{n-3}\inℤ\)\(\Leftrightarrow n-3\inƯ\left(2\right)\Leftrightarrow n-3\in\left\{\pm1;\pm3\right\}\)\(\Leftrightarrow n\in\left\{4;2;6;0\right\}\)

15 tháng 11 2023

Vũ™©®×÷|

1)C=5/1.2+5/2.3+5/3.4+...+5/99.100

   C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

   C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

   C=5.(1/1-1/100)

   C=5.99/100

   C=99/20

2)|x+1|=5

⇒x+1=5 hoặc x+1=-5

       x=4 hoặc x=-6

  3)                    Giải:

Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3

2n+5 ⋮ n+3

⇒2n+6-1 ⋮ n+3

⇒1 ⋮ n+3

Ta có bảng:

n+3=-1 ➜n=-4

n+3=1 ➜n=-2

Vậy n ∈ {-4;-2}

29 tháng 4 2017

2n\(\ne\) 0

2n=0

n=0/2=0

=>n\(\ne\) 2 thì 4/2n là phân số

29 tháng 4 2017

để 4/2n là số nguyên thi 4\(⋮\) 2n

=>2n\(\in\) Ư (4)

2n=1

n=1/2 loại

2n=2

n=2/2=1 chọn

2n=4

n=4/2=2 chọn