Cho hình bình hành ABCD , trên tia đối của tia DA lấy DM = AB , trên tia đối của tia BA lấy BN = AD . Chứng minh :
a) hai tam giác CBN và CDM cân và đồng dạng với nhau
b) Chứng minh M,C,N thẳng hàngq
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBCN có BC=BN
nên ΔBCN cân tại B
Xét ΔDCM có DM=DC
nên ΔDCM can tại D
b: Xét ΔCBN và ΔMDC có
CB=MD
góc CBN=góc MDC
BN=DC
=>ΔCBN=ΔMDC
a: BN=AD
BC=AD
=>BN=BC
=>ΔBNC cân tại B
DC=AB
DM=AB
=>DC=DM
=>ΔDCM cân tại D
a)Vì ABCD là hình bình hành nên ta có 2 góc bằng nhau: ABC=ADC, hai cặp cạnh đối bằng nhau: AB=CD; AD=BC
Suy ra BN=AD=BC ; DM=AB=CD \(\Rightarrow\)CBN và CDM là hai tam giác cân
CDM=CBN (cùng bù với hai góc bằng nhau)(1)
Ta có: BN=AD=BC ; DM=AB=DC
suy ra \(\frac{BN}{DM}=\frac{BC}{DC}\)(2)
Từ (1) và (2) ,ta có: \(\Delta CBN\)đồng dạng với \(\Delta CDM\)
b)Từ phần a, ta có: góc DMC=DCM=BCN=BNC
Vì BA song song với DC nên CBN=BCD(so le ngoài)
Ta có:(góc) MCN=DCM+BCD+BCN=BNC+CBN+BCN=180 độ (tổng 3 góc trong 1 tam giác)
Vậy M,C,N thẳng hàng