K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

Đặt a=A'B',b=A'C', c=B'C'

Theo đề,ta có: a/6=b/8=c/10

mà cạnh nhỏ nhất trong tam giác A'B'C' là 9cm

nên b/8=c/10=9/6=3/2

=>b=12cm; c=15cm

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78

Câu 2:

a: Vì ΔABC~ΔDEF theo tỉ số đồng dạng là \(k=\dfrac{1}{2}\)

nên \(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=k=\dfrac{1}{2}\)

=>\(\dfrac{6}{DE}=\dfrac{8}{DF}=\dfrac{BC}{20}=\dfrac{1}{2}\)

=>\(DE=6\cdot2=12;DF=8\cdot2=16;BC=\dfrac{20}{2}=10\)

Chu vi tam giác ABC là:

10+6+8=24

Chu vi tam giác DEF là:

12+16+20=48

b: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{6}=\dfrac{CD}{8}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

mà BD+CD=BC=10

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)

=>\(BD=3\cdot\dfrac{10}{7}=\dfrac{30}{7};CD=4\cdot\dfrac{10}{7}=\dfrac{40}{7}\)

 

 

Bài 1:

a: M thuộc AB

\(AM=\dfrac{1}{2}AB\)

Do đó: M là trung điểm của AB

Xét ΔABC có \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

nên MN//BC

Xét ΔAMN và ΔABC có

\(\widehat{AMN}=\widehat{ABC}\)(hai góc đồng vị, MN//BC)

\(\widehat{MAN}\) chung

Do đó: ΔAMN~ΔABC

b: ΔAMN~ΔABC

=>\(k=\dfrac{MN}{BC}=\dfrac{1}{2}\)

Bài 2:

loading...

loading...

18 tháng 4 2020

xdhxef

18 tháng 4 2020

6.)

Khi 2 tam giác đồng dạng với nhau thì cạnh nhỏ nhất  của tam giác này sẽ tương ứng với cạnh nhỏ nhất của tam giác kia.

Theo đề:\(A'B'\)=4,5

Ta có:\(\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)

    \(\Rightarrow\)\(\frac{4,5}{3}=\frac{B'C'}{5}=\frac{C'A'}{7}\)

   \(\Rightarrow\)\(B'C'=7,5cm,C'A'=10,5cm\)

a: Xét ΔABC vuông tại A và ΔDEF vuông tại D có 

AB/DE=AC/DF

Do đó: ΔABC\(\sim\)ΔDEF

b: \(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{AB}{DE}=\dfrac{2}{3}\)

16 tháng 9 2023

limdim

8 tháng 4 2020

bài1
a) EF=??
b) không đồng dạng
c) không đồng dạng
d) Đồng dạng (vì sao thì bạn nhắn cho mình nha)
các cặp góc bằng nhau ABC=DEF; BCA=EFD; CAB=FDE

bài 2
a) theo tính chất đường trung bình trong mỗi tam giác (không hiểu thì nhắn cho mình)
ta có MN=1/2AB => MN/AB=1/2 (1)
         NM=1/2BC => NP/BC=1/2 (2)
         MP=1/2AC => MP/AC=1/2 (3)

từ (1),(2),(3) => MNP đồng dạng với ABC 
b) vì MNP đồng dạng với ABC với tỉ số k là 2 ( theo câu a)
nên chu vi ABC = 2 lần chu vi MNP =40cm

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.Bài 4: Cho hình...
Đọc tiếp

Bài 1: Cho tam giác ABC có AB =12cm, AC = 24cm, Trên cạnh AB, AC lần lượt lấy các điểm D, E sao cho AD =8cm, AE = 4cm. Biết DE = 10cm, tính độ dài cạnh BC.

Bài 2: Cho tam giác ABC. Điểm D thuộc cạnh AC sao cho AB2 = AD.AC. Tính AD, AC nếu biết AB = 10cm và tỉ số khoảng cách từ A đến BD, BC là 1:2.

Bài 3: Cho hình thang ABCD(AB//CD), 𝐴̂ = 𝐷̂ = 900 ; AB =2; CD = 4,5, BD = 3. Chứng minh rằng BC vuông góc với BD.

Bài 4: Cho hình bình hành ABCD. Vẽ AH vuông góc với CD tại H, AK vuông góc với BC tại K. Chứng minh rằng tam giác KAH đồng dạng với tam giác ABC

. Bài 5: Cho hình vuông ABCD. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại M, tia DE cắt đường thẳng AB tại N. Chứng minh rằng

a) Tam giác NBC đồng dạng với tam giác BCM                                  b) BM vuông góc với CN.

Bài 6: Cho tam giác ABC có AB = 2,5cm, AC = 2cm, BC =3cm. Chứng minh rằng 𝐴̂ =2𝐵̂

. Bài 7: Cho tam giác ABC và G là điểm thuộc miền trong tam giác. Tia AG cắt BC tại K và tia CG cắt AB tại M. Biết AG =2GK và CG = 2GM. Chứng minh rằng G là trọng tâm của tam giác ABC.

Bài 8: Cho tam giác ABC cân tại A và M là trung điểm của cạnh đáy BC.Một điểm D thay đổi trên cạnh AB. Lấy một điểm E trên cạnh AC sao cho CE .BD = MB2 . Chứng minh rằng:

a) Tam giác DBM và MCE đồng dạng

b) Tam giác DME cùng đồng dạng với hai tam giác trên.

c) Dm là phân giác của góc BDE, EM là phân giác của góc CED.

d) Khoảng cách từ M đến ED không đổi khi D thay đổi trên AB.

 

0