Tìm số HS của lớp 8A và 8B, biết rằng nếu chuyển 5 HS của lớp 8B sang lớp 8A thì số HS hai lớp bằng nhau. Nếu chuyển 10 HS của lớp 8A sang lớp 8B thì 8B gấp đôi sốHS 8A.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không biết bạn đã học giải hệ phương trình chưa, nhưng mình vẫn áp dụng làm bằng hệ phương trình sẽ nhanh hơn
Gọi số học sinh lớp 8A là x , số học sinh lớp 8B là y (x,y thuộc N)
Theo đề : x-3=y+3
(y-5)=(x+5)*11/19
Giải ra được x=33 ; y=27
Vậy : ..............................
gọi số học sinh 8a ban đầu là x
sau khi chuyển 3hs thì 8a có (x-3) học sinh = số học sinh 8b lúc sau
số học sinh 8b lúc chưa nhận 3 học sinh từ 8a là (x-3)-3 =x-6 học sinh
nếu chuyển 5hs từ 8b sang 8a thì số hs 2 lớp là
8a : x+5 ( học sinh)
8b: (x-6)-5 =x-11 (học sinh)
có số hs 8b =11/19 hs 8a => x-11=11/19.(x+5)
giải phương trình suy ra x
gọi x, y lần lượt là số học sinh của lớp 8A và 8B.
ta có: x-y=4 (1)
\(\left(y-5\right)=\dfrac{2\left(x+5\right)}{3}\Leftrightarrow3y-15=2x+10hay-2x+3y=25\)(2)
từ (1) và (2), ta có hệ phương trình:
\(\left\{{}\begin{matrix}x-y=4\\-2x+3y=25\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=37\\y=33\end{matrix}\right.\)
tổng số học sinh của lớp 8A và 8B là 37+33=70(học sinh)
(chú ý: x-2=a+2 thì x-2-2=a hay x-4=a)
gọi số học sinh lớp 8A là x(HS) (x\(\in\) N*)
số HS lớp 8B là x-4(HS)
nếu chuyển 5 HS lớp 8B sang lớp 8A thì:
số HS lớp 8A là x+5 (HS)
lớp 8B là x-4-5=x-9(HS)
theo đề bài ta có phương trình:
\(\dfrac{2}{3}\left(x+5\right)=x-9\\ \Leftrightarrow\dfrac{2\left(x+5\right)}{3}=\dfrac{3\left(x-9\right)}{3}\\ \Leftrightarrow2x+10=3x-27\\ \Leftrightarrow2x-3x=-10-27\\ \Leftrightarrow-x=-37\\\Leftrightarrow x=37\left(HS\right)\)
số HS lớp 8A là 37(HS) \(\Rightarrow\) số HS lớp 8B là 37-4=33(HS)
tổng số HS 2 lớp là 37+33=70(HS)
`#Mγη`
Gọi số học sinh A là x, số học sinh B là y. (x>8;y>0, x và y thuộc N*)
Tổng số học sinh của hai lớp 8A và 8B là 84 em: x+ y =84(1)
Nếu chuyển 8 em tờ lớp 8A qua lớp 8B thì số học sinh của hai lớp bằng nhau:
x-8=y+8
<=> x-8-y-8=0 <=> x-y=16(2)
từ 1, 2 ta có hệ phương trình:
x+ y = 84
x-y=16
giải hệ phương trình ta được
x =50 (thỏa mãn)
y =34 (thỏa mãn)
vậy số học sinh A, B lần lượt là 50,34
Gọi số HS lớp 8a là 4x (x thuộc N*)
=> số HS lớp 8b là 5x
theo đề bài ta có 4x + 20 = 2.(5x - 20)
<=> 6x = 60
<=> x = 10 ( TM)
=> số học sinh lớp 8a là 40 HS
=> số học sinh lớp 8b là 50 HS
Gọi số học sinh ban đầu của lớp 8A là x (em) với \(8< x< 84\)
Số học sinh ban đầu của lớp 8B là: \(84-x\) (học sinh)
Sau khi chuyển 8 học sinh từ 8A sang 8B thì số học sinh của lớp 8A là \(x-8\) và số học sinh lớp 8B là \(84-x+8=92-x\)
Do số học sinh 8A lúc này bằng 3/4 số học sinh 8B nên ta có pt:
\(x-8=\dfrac{3}{4}\left(92-x\right)\)
\(\Leftrightarrow x+\dfrac{3}{4}x=77\)
\(\Leftrightarrow\dfrac{7}{4}x=77\)
\(\Leftrightarrow x=44\)
Vậy ban đầu lớp 8A có 44 học sinh, 8B có 40 học sinh
Gọi số học sinh ban đầu của lớp 8A và 8B lần lượt là a,b
Theo đề, ta có: a+b=84 và a-8=3/4(b+8)
=>a+b=84 và a-3/4b=6+8=14
=>a=44; b=40