Chứng minh các đẳng thức sau:
(với x là giá trị để biểu thức có nghĩa)
1/ \(\frac{\sin2x-\sin4x}{1-\cos2x+\cos4x}=-\tan2x\)
2/ \(\frac{\sin4x-\sin2x}{1-\cos2x+\cos4x}=\tan2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=\frac{2sin2x.cos2x-sin2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(2cos2x-1\right)}{cos2x\left(2cos2x-1\right)}=\frac{sin2x}{cos2x}=tan2x\)
\(\Rightarrow\) đề sai
b/
\(\frac{1-cos4x}{sin4x}=\frac{1-\left(1-2sin^22x\right)}{2sin2x.cos2x}=\frac{2sin^22x}{2sin2x.cos2x}=\frac{sin2x}{cos2x}=tan2x\)
Đề sai tiếp lần 2
\(D=\frac{1+sin2x+cos2x}{1+sin2x-cos2x}=\frac{1+2sinxcosx+2cos^2x-1}{1+2sinxcosx-1+2sin^2x}\)
\(D=\frac{cosx\left(sinx+cosx\right)}{sinx\left(sinx+cosx\right)}=cotx\)
Chọn A
y = cos6 x+ sin2xcos2x(sin2x + cos2x) + sin4x - sin2x
= cos6x + sin2x(1 - sin2x) + sin4x - sin2x = cos6x
Do đó : y' = -6cos5xsinx.
\(cos5x.cos3x+sin7x.sinx=\frac{1}{2}cos8x+\frac{1}{2}cos2x-\frac{1}{2}cos8x+\frac{1}{2}cos6x\)
\(=\frac{1}{2}\left(cos6x+cos2x\right)=cos4x.cos2x\)
\(\frac{1-2sin^22x}{1-sin4x}=\frac{cos^22x-sin^22x}{cos^22x+sin^22x-2sin2x.cos2x}\)
\(=\frac{\left(cos2x-sin2x\right)\left(cos2x+sin2x\right)}{\left(cos2x-sin2x\right)^2}=\frac{cos2x+sin2x}{cos2x-sin2x}=\frac{\frac{cos2x}{cos2x}+\frac{sin2x}{cos2x}}{\frac{cos2x}{cos2x}-\frac{sin2x}{cos2x}}=\frac{1+tan2x}{1-tan2x}\)
\(2cosx-3cos\left(\pi-x\right)+5sin\left(4\pi-\frac{\pi}{2}-x\right)+cot\left(\pi+\frac{\pi}{2}-x\right)\)
\(=2cosx+3cosx-5sin\left(\frac{\pi}{2}+x\right)+cot\left(\frac{\pi}{2}-x\right)\)
\(=5cosx-5cosx+tanx=tanx\)
Ý bạn là $m\cot 2x$?
Lời giải:
$\frac{\cos 4x+\cos 2x+1}{\sin 4x+\sin 2x}=\frac{\cos ^22x-\sin ^22x+\cos 2x+1}{2\sin 2x\cos 2x+\sin 2x}$
$=\frac{2\cos ^22x-1+\cos 2x+1}{\sin 2x(2\cos 2x+1)}$
$=\frac{2\cos ^22x+\cos 2x}{\sin 2x(2\cos 2x+1)}$
$=\frac{\cos 2x(2\cos 2x+1)}{\sin 2x(2\cos 2x+1)}$
$=\frac{\cos 2x}{\sin 2x}=\cot 2x$
$\Rightarrow m=1$
Để hàm số y xác định trên R, ta cần xác định điều kiện để biểu thức trong dấu căn không âm: 1/ y = √(cos^2x + cosx - 2m + 1) Điều kiện: cos^2x + cosx - 2m + 1 ≥ 0 - Để giải bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x + cosx - 2m + 1 không có nghiệm trong khoảng [-∞ , +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = 1 - 4(1)(-2m + 1) = 8m - 3 - Để f(x) không có nghiệm, ta cần Δ < 0: 8m - 3 < 0 => m < 3/8 Do đó, hàm số y = √(cos^2x + cosx - 2m + 1) xác định trên R khi m < 3/8. 2/ y = √(cos^2x - 2cosx + m) Điều kiện: cos^2x - 2cosx + m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 2: f(x) = cos^2x - 2cosx + m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-2)^2 - 4(1)(m) = 4 - 4m = 4(1 - m) ) - Để f(x) không có nghiệm, ta cần Δ < 0: 1 - m < 0 => m > 1 Do đó, hàm số y = √(cos^2x - 2cosx + m) xác định trên R khi m > 1. 3/ y = √(sin^4x + cos^4x - sin^2x - m) Điều kiện: sin^4x + cos^4x - sin^2x - m ≥ 0 - Để giải được bất phương trình này, ta cần tìm giá trị của m sao cho đa thức bậc 4: f(x) = sin^4x + cos^4x - sin^2x - m không có nghiệm trong khoảng [-∞, +∞]. - Để f(x) không có nghiệm, ta cần xét delta của đa thức: Δ = b^2 - 4ac = (-1)^2 - 4(1)(-m) = 1 + 4m - Để f(x) ) không có nghiệm, ta cần Δ < 0: 4m < -1 => m < -1/4 Do đó, hàm số y = √(sin^4x + cos^4x - sin^2x - m) xác định trên R khi m < -1/4.
\(\frac{sin2x-sin4x}{1-cos2x+cos4x}=\frac{sin2x-2sin2x.cos2x}{1-cos2x+2cos^22x-1}=\frac{sin2x\left(1-2cos2x\right)}{-cos2x\left(1-2cos2x\right)}=\frac{-sin2x}{cos2x}=-tan2x\)
\(\frac{sin4x-sin2x}{1-cos2x+cos4x}=-\left(\frac{sin2x-sin4x}{1-cos2x+cos4x}\right)=-\left(-tan2x\right)=tan2x\) lấy luôn kết quả câu trên cho lẹ, biến đổi thì làm y hệt