K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2017

a/ Ta chứng minh: \(B=\left(\sqrt{3}+\sqrt{2}\right)^{2n}+\left(\sqrt{3}-\sqrt{2}\right)^{2n}=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n\) là số nguyên với mọi n

Với \(n=0\Rightarrow B=2\)

Với \(n=1\Rightarrow B=10\)

Giả sử nó đúng đến \(n=k\) hay

\(\hept{\begin{cases}\left(5+2\sqrt{6}\right)^{k-1}+\left(5-2\sqrt{6}\right)^{k-1}=a\\\left(5+2\sqrt{6}\right)^k+\left(5-2\sqrt{6}\right)^k=b\end{cases}}\) \(\left(a,b\in Z\right)\)

Ta chứng minh nó đúng đến \(n=k+1\)

Ta có: \(\left(5+2\sqrt{6}\right)^{k+1}+\left(5-2\sqrt{6}\right)^{k+1}\)

\(=\left(5+2\sqrt{6}\right)\left(b-\left(5-2\sqrt{6}\right)^k\right)+\left(5-2\sqrt{6}\right)\left(b-\left(5+2\sqrt{6}\right)^k\right)\)

\(=b\left(5+2\sqrt{6}\right)-\left(5-2\sqrt{6}\right)^{k-1}+b\left(5-2\sqrt{6}\right)-\left(5+2\sqrt{6}\right)^{k-1}\)

\(=10b-a\)

Vậy ta có điều phải chứng minh

6 tháng 10 2017

b/ Đặt \(S_n=\left(5+2\sqrt{6}\right)^n+\left(5-2\sqrt{6}\right)^n=x^n+y^n\)

Ta có: \(\hept{\begin{cases}x^2=10x-1\\y^2=10y-1\end{cases}}\)

\(\Rightarrow S_{n+2}=x^{n+2}+y^{n+2}=10\left(a^{n+1}+b^{n+1}\right)-\left(a^n+b^n\right)=10S_{n+1}-S_n\)

\(\Rightarrow S_{n+2}+S_n=10S_{n+1}⋮10\)

Tương tự cũng có: \(S_{n+4}+S_{n+2}=10S_{n+3}⋮10\) 

\(\Rightarrow S_{n+4}-S_n⋮10\)

Từ đây ta thấy được \(S_{n+4}\equiv S_n\left(mod10\right)\)

Mà \(S_0=2\)

Vậy với mọi n chia hết cho 4 thì số tận cùng của B là 2.

Quay lại bài toán ta thấy \(1004⋮4\) nên M sẽ có chữ số tận cùng là 2.

25 tháng 9 2021

a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)

24 tháng 7 2018

Ta có:

\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)

\(\Rightarrow\left(x+\sqrt{x^2+2016}\right)\left(\sqrt{x^2+2016}-x\right)=x^2+2016-x^2=2016\)

Mà: \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)

\(\Rightarrow\sqrt{x^2+2016}-x=\sqrt{y^2+2016}+y\)

\(\Rightarrow x+y=\sqrt{x^2+2016}-\sqrt{y^2+2016}\) (1)

Chứng minh tương tự ta có: \(\sqrt{y^2+2016}-y=\sqrt{x^2+2016}+x\)

\(\Rightarrow x+y=\sqrt{y^2+2016}-\sqrt{x^2+2016}\) (2)

Cộng (1) với (2) ta được:

\(2\left(x+y\right)=0\Leftrightarrow x+y=0\)

12 tháng 3 2021

Có dấu = nha, mình nhầm

12 tháng 3 2021