Cho tam giác ABC. Trên tia AB,AC lần lượt lấy các điểm M,N sao cho tam giác ABC đồng dạng tam giác ANM. Kẻ tia phân giác góc BAC cắt BN và MC tại E,F.Gọi H là trung điểm của AB. Chứng minh : HN vuông góc AE biết rằng BE/NE.CF/MF=BE/NE+CF/MF.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
24 tháng 9 2022
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
7 tháng 1 2023
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
4 tháng 10 2021
a: Xét tứ giác AKBC có
M là trung điểm của đường chéo CK
M là trung điểm của đường chéo AB
Do đó: AKBC là hình bình hành
Suy ra: BK//AC
b: Xét ΔABE và ΔACE có
AB=AC
\(\widehat{BAE}=\widehat{CAEE}\)
AE chung
Do đó: ΔABE=ΔACE