1, Tính tích chỉ rõ phần hệ số , phần biến, tìm bậc của đơn thức:
a, \(-6ax^3y\cdot\frac{1}{3}x^2\)( a là hằng số )
b, \(4x^2yz^3\cdot\left(-\frac{1}{4}xy^4\right)z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(-\frac{5}{4}x^2y\right)\cdot\left(\frac{2}{5}x^3y^4\right)\)
\(=\left(-\frac{5}{4}\cdot\frac{2}{5}\right)\cdot\left(x^2\cdot x^3\right)\cdot\left(y\cdot y^4\right)\)
\(=\frac{-1}{2}x^5y^5\)
b) Hệ số là \(\frac{-1}{2}\), phần biến là \(x^5;y^5\); Bậc là 10
Bài 2:
a) Ta có: \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\)
\(=\left(\frac{3}{4}\cdot\frac{-8}{9}\right)\cdot\left(x^2\cdot x^2\cdot x\right)\cdot\left(y\cdot y^3\right)\cdot z\)
\(=-\frac{2}{3}x^5y^4z\)
b)
-Phần biến là \(x^5;y^4;z\)
-Bậc là 10
Thay x=1; y=-1 và z=3 vào biểu thức \(A=\frac{-2}{3}x^5y^4z\), ta được
\(\frac{-2}{3}\cdot1^5\cdot\left(-1\right)^4\cdot3=-2\)
Vậy: -2 là giá trị của biểu thức \(A+\left(\frac{3}{4}x^2yz\right)\cdot\left(-\frac{8}{9}x^2y^3x\right)\) tại x=1; y=-1 và z=3
\(E=\left(1\frac{1}{2}xy^2\right).\left(1\frac{1}{3}x^2y^3\right).\left(1\frac{1}{4}x^3y^4\right).....\left(1\frac{1}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}xy^2\right).\left(\frac{4}{3}x^2y^3\right).\left(\frac{5}{4}x^3y^4\right).....\left(\frac{2015}{2014}x^{2013}y^{2014}\right)\)
\(E=\left(\frac{3}{2}.\frac{4}{3}.\frac{5}{4}......\frac{2015}{2014}\right).\left(x.x^2.x^3......x^{2013}\right).\left(y^2y^3.y^4......y^{2014}\right)\)
\(E=\left(\frac{3.4.5......2015}{2.3.4......2014}\right).\left(x^{1+2+3+....+2013}\right).\left(y^{2+3+4+....+2014}\right)\)
\(E=\frac{2015}{2}.x^{2027091}.y^{2029104}\)
Đến đây tự kết luận nhé(hệ số;phần biến;đơn thức)
a) \(\left(2\frac{1}{3}x^2y^3z\right)^{10}.\left(\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(2\frac{1}{3}x^2y^3z.\frac{-3}{7}x^5y^4z^2\right)^{10}.axyz\)
=\(\left(\frac{7}{3}.\frac{-3}{7}x^2.x^5.y^3.y^4.z.z^2\right)^{10}.axyz\)
=\(\left(-1.x^7y^7z^3\right)^{10}.axyz\)
=\(x^{70}.y^{70}z^{30}.axyz\)
=\(a.x^{71}.y^{71}.z^{31}\)
PHS: a
PB: x71.y71.z31
Bậc: 173
a, \(M=\dfrac{1}{2}x^4y^4\)
b, hệ số : 1/2 ; biến x^4y^4 ; bậc 8
a) -6ax3y.1/3x2 = (-6a.1/3).(x3.x2).y = -2ax5y
Hệ số : -2a (a là hằng số)
Phần biến: x5y
Bậc : 6
.b) 4x2yz3.(-1/4xy4)z = [4.(-1/4)] . (x2 . x).(y.y4).(z3.z) = -x3y5z4
Hệ số : -1
Phần biến: x3y5z4
Bậc : 12
c) (-2x2y)25x3y4z = -4x4y2.5x3y4z = (-4.5).(x4.x3).(y2.y4).z = -20x7y6z
Hệ số: -20
Phần biến : x7y6z
Bậc : 14
d) (-2/3xy3z2)2.(-3x2yz)3 = -4/9x2y6z4.(-27)x6y3z3 = [(-4/9).(-27)].(x2.x6).(y6.y3).(z4.z3) = 12x8y9z7
Hệ số: 12
Phần biến: x8y9z7
Bậc: 24
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
a, \(-6ax^3y.\frac{1}{3}x^2=-2ax^5y\)
Hệ số : \(-2\)
Hằng số : \(a\)
Biến : \(x^5y\)
b, \(4x^2yz^3.\left(-\frac{1}{4}xy^4\right)z\)
\(=-x^3y^5z^4\)
Hệ số : \(-1\)
Biến : \(-x^3y^5z^4\)