K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAE vuông tại A và ΔBKE vuông tại K có

BE chung

góc ABE=góc KBE

=>ΔBAE=ΔBKE

=>EA=EK

b: Xét ΔCED có

CH vừa là đường cao, vừa là trungtuyến

=>ΔCED cân tại C

=>góc CDE=góc CED

24 tháng 4 2023

giải nữa đi bạn

 

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

Bài tập:Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.1) Chứng minh hai tam giác ABH và ACH bằng nhau2) Tìm độ dài đoạn AH?c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực? Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC...
Đọc tiếp

Bài tập:

Bài 1: Cho D ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.

1) Chứng minh hai tam giác ABH và ACH bằng nhau

2) Tìm độ dài đoạn AH?

c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?

 

Bài 2:  Cho tam giác ABC cân tại A, gọi H là trung điểm của cạnh BC. Từ H vẽ HM vuông góc AB tại M, HN vuông AC tại N.

a) Chứng minh hai tam giác ABH và ACH bằng nhau

b) Chứng minh HM = HN

c) Chứng minh AM = AN

d) AH có là đường trung trực của tam giác ABC hay không? Vì sao?

 

Bài 3: Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.

a) Chứng minh CH vuông góc AB

b) Tính góc BHD và góc DHE?

 

Bài 4: Cho tam giác ABC vuông tại A, BD là tia phân giác của góc B, trên tia BC lấy điểm E sao cho BA = BE, gọi H là giao điểm của AB với DE.

a) Chứng minh DE vuông góc BE

b) Chứng minh BD là đường trung trực của AE

c) Chứng minh AE song song với HC.

 

 

0

a) Xét ΔBDH vuông tại H và ΔBEH vuông tại H có 

BH chung

DH=EH(H là trung điểm của DE)

Do đó: ΔBDH=ΔBEH(hai cạnh góc vuông)

Suy ra: \(\widehat{BDH}=\widehat{BEH}\)(hai góc tương ứng)

mà \(\widehat{BDH}=\widehat{ADC}\)(hai góc đối đỉnh)

và \(\widehat{CEB}=\widehat{BEH}\)

nên \(\widehat{CEB}=\widehat{ADC}\)(đpcm)

Ta có: ΔBDH=ΔBEH(cmt)

nên \(\widehat{DBH}=\widehat{EBH}\)(hai góc tương ứng)(1)

Xét ΔADC vuông tại A và ΔHDB vuông tại H có 

\(\widehat{ADC}=\widehat{HDB}\)(hai góc đối đỉnh)

Do đó: ΔADC\(\sim\)ΔHDB(g-g)

Suy ra: \(\widehat{ACD}=\widehat{HBD}\)(hai góc tương ứng)(2)

Từ (1) và (2) suy ra \(\widehat{EBH}=\widehat{ACD}\)(Đpcm)

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

8 tháng 3 2022

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

 

\widehat{BAE} =\widehat{BHE} =90^0

 (gt)

 

 

\widehat{B_1} =\widehat{B_2}

( BE là đường phân giác BE).

 

BE là cạnh chung.

=> ΔABE = ΔHBE

 

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

 

\widehat{KAE} =\widehat{CHE} =90^0

 (gt)

 

EA = EH (cmt)

 

\widehat{E_1} =\widehat{E_2}

( đối đỉnh).

 

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

13 tháng 7 2021

undefined

a,△BED có H là trung điểm của DE và BH ┴ DE
=> △BED cân ở B
=> ∠BED = ∠BDE
∠BDE = ∠ADC (đối đỉnh)
=> ∠BED = ∠ADC
△BED cân ở B => BH là phân giác của ∠EBD
=> ∠EHB = ∠DBH
mà ∠DBH = 90⁰ - ∠BFA = 90⁰ - ∠HFC = ∠ACD
=> ∠EBH = ∠ACD
b, ∠EBH = ∠ACD = ∠DCB (vì CH là phân giác của ∠ACB)
= 90⁰ - ∠CBH
=> ∠EHB + ∠CBH = 90⁰
=> BE ┴ BC
c, △FBC có CH ┴ BF ; BA ┴ FC ; CH ⋂ BA = {D}
=> D là trực tâm của △FBC
=> FD ┴ BC
BE ┴ BC
=> FD//BE

16 tháng 12 2016

a) xét ▲ABD VÀ▲ EBD có

BD là cạnh chung

góc ABD= góc DBE

AB= BE

nên Δ ABD=Δ EBD (c.g.c)

16 tháng 12 2016

b) vì Δ ABD=Δ EBD (cmt)

→ góc BED= góc BAC (2 góc tương ứng)

c) ta có:

AH VUÔNG VỚI BC

→ góc AHE = 90o (1)

góc bed = 90o (cmt) (2)

từ (1) và (2) suy ra DE song song với AH (2 đường thẳng cùng vuông góc với 1 đường thẳng)