K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

n không thể là số lẻ vì khi đó có ít nhất 6 số chẵn >2 nên không thể là số nguyên tố. Dễ thấy với n=2 số n+7=9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n=4 số n+5=9 là hợp số. Với n=6 dễ thấy cả 7 số đều là số nguyên tố.
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1,n+5,n+7,n+6,n+3,n+4,n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7.
 Với n≥8 trong 7 số đã cho có 1 số chia hết cho 7 và >7 nên là hợp số.

 Số duy nhất thỏa mãn là n=6 

Xem thêm tại đây nhé bạn : Tìm số n nguyên dương sao cho tất cả các số n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là số nguyên tố - Số học - Diễn đàn Toán học

2 tháng 5 2019

Ta thấy: n phải là số chẵn vì trong dãy có phần dư của n là số lẻ (nếu là số lẻ thì các số trên chẵn ra hợp số)

Mà số nguyên tố chẵn duy nhất là 2 nên n = 2

Thay n = 2, ta có: n + 7 = 2 + 7 = 9 (loại vì là hợp số)

+) Với n = 4

Ta có: n + 5 = 4 + 5 = 9 (loại vì là hợp số)

+) Với n = 6

Với n = 6 thì tất cả các số trên đều là số nguyên tố (tm)

Theo nguyên lí Dirichle thì trong một phép chia cho 7 thì có nhiều nhất 6 số dư

Vậy ta dễ chứng minh để loại hết các số lớn hơn 6

Vậy n = 6 là nghiệm duy nhất cần tìm.

7 tháng 5 2017

 n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố. 
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7. 
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số. 
=> số duy nhất thỏa mãn là n = 6

6 tháng 5 2017

 n không thể là số lẻ vì lúc đó ít nhất 6 số chẵn > 2 nên không thể là số nguyên tố. Dễ thấy với n = 2 số n + 7 = 9 là hợp số (tất nhiên không chỉ số đó nhưng ta không cần gì hơn), với n = 4 số n + 5 = 9 là hợp số. Với n = 6 dễ thấy cả 7 số đều là số nguyên tố. 
Dễ thấy là trong 7 số đã cho có 1 số chia hết cho 7. Thật thế 7 số đã cho khi chia cho 7 có cùng số dư với 7 số n+1, n+5, n+7, n+6, n+3, n+4, n+2 mà trong 7 số tự nhiên liên tiếp có 1 số chia hết cho 7. 
=> với n ≥ 8 trong 7 số đã cho có 1 số chia hết cho 7 và > 7 nên là hợp số. 
=> số duy nhất thỏa mãn là n = 6

**** mik nha

3 tháng 1

n+1;n+5;n+7;n+13;n+17;n+25;n+37.

cách làm:

n+7=n+7.1

n+1=(n+1)+7.0

n+37=(n+2)+7.5

n+17=(n+3)+7.2

n+25=(n+40)+7.3

n+5=(n+5)+7.0

n+13=(n+6)+7.1

các số khi chia cho 7 sẽ có 7 số dư khác nhau

==>trong các số trên có ít nhất 1 số chia hết cho 7

các số ,n+7,n+13,n+17,n+25,n+37 đều lớn hơn 7 néu chúng chia hết cho 7 thì đó là các hợp số ==> loại

==>n+1 hoặc n+5 chia hết cho 7

+trường hợp 1

n+1=7==>n=6,khi đó các số đều là SNT 

trường hợp 2

n+5=7==>n=2 khi đó n+7=9 không phải là SNT nên loại vậy n=6

10 tháng 5 2017

n=2 để n+1;n+5;n+7;n+13;n+17;n+25;n+37 đều là các số nguyên tố

11 tháng 5 2017

Nếu các số nguyên n bằng 0 tại;n+1;n+5;n+13;n+17;n+25;n+37,thì ta có ;

0+1;0+5;0+7;0+13;0+17;0+25;0+37[1;5;7;13;17;25;37]

Mà 1;5;7;13;17;25;37 chính là các nguyên tố

Suy ra tat ca cac so nguyên n=o thì tất cả các số  n+1;n+5;n+7;n+13;n+17n;n+25;n+37  đều là các số nguyên tố

[nếu bài của mình đúng hay tích để nhé]

11 tháng 5 2017

(n+1=n+5+n+7) + ( n+13+n+17+n+25) +37

n=(1+5+7+13+17+25)+37

n=68+37

n= tu tinh not nhe ban

8 tháng 1 2018

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

n là số 4

vì 4+1=5 là số nguyên tố

4+3=7 là số nguyên tố

4+7=11 là số nguyên tố

4+9=13 là số nguyên tố

4+13=17 là số nguyên tố

4+15=19 là số nguyên tố.

tk nha

14 tháng 7 2017

Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4

20 tháng 8 2020

1. \(n\in\left\{1;2;3;4;5;...\right\}\)

2. \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1009}\)

\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)

Ta có :

\(\left(A-B-1\right)^{2019}=\left(\frac{1}{1010}+...+\frac{1}{2019}-\left(\frac{1}{1010}+...+\frac{1}{2019}\right)-1\right)^{2019}\)

\(=\left(-1\right)^{2019}=-1\)