-) giúp em vss
cho tam giác abc có ab < ac . ad là tia phân giác ^bac. trên tia ac lấy điểm e sao cho ae = ab . chứng minh ad là đường trung trực của be.gọi f là giao điểm của ab và de.chứng minh góc fbd và góc dec ;tam giác bfd và dec
-.- trar 3 tick nhaaa . Chieeuf thi r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì AB = AE (GT) => tgABE cân tại A
Mà AD là tia phân giác của góc BAE (do E thuộc AC)
Từ 2 điều trên => AD là trung trực của BE
a) Xét tam giác ABD: AB = AD (gt).
=> Tam giác ABD cân tại A.
Mà AH là phân giác góc BAD (gt).
=> AH là trung tuyến (Tính chất tam giác cân).
=> H là trung điểm của cạnh BD (đpcm).
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
a: Ta có: ΔABD cân tại A
mà AH là đường phân giác
nên H là trung điểm của BD
b: Xét ΔABF và ΔADF có
AB=AD
\(\widehat{BAF}=\widehat{DAF}\)
AF chung
Do đó: ΔABF=ΔADF
Suy ra: FB=FD
Xét ΔBFE và ΔDFC có
FB=FD
\(\widehat{FBE}=\widehat{FDC}\)
BE=DC
Do đó: ΔBFE=ΔDFC
Suy ra: \(\widehat{BFE}=\widehat{DFC}\)
mà \(\widehat{DFC}+\widehat{DFB}=180^0\)
nên \(\widehat{BFE}+\widehat{BFD}=180^0\)
=>D,E,F thẳng hàng
Cho tam giác ABC, AB<AC.Tia p/g của góc A cắt BC ở D, trên tia AC lấy điểm E sao cho AE=AB. Gọi tia M là giao điểm của AB va DE
Cmr: a) tam giác ABD=tam giacd AED
b) tam giacd DBM=tam giác DEC
a) - Xét tam giác ABD và tam giác AED, có:
+ Chung AD
+ góc BAD = góc EAD (AD là tia phân giác của góc BAC)
+ AB = AE (gt)
=> tam giác ABD = tam giác AED (cgc)
a, xét tam giác ABD và tam giác AED có : AD chung
^BAD = ^EAD do AD là pg của ^BAC (gt)
AB = AE (gt)
=> tam giác ABD = tam giác AED (c-g-c)
b, tam giác ABD = tam giác AED (câu a)
=> ^ABD = ^AED (đn)
^ABD + ^DBF = 180
^AED + ^DEC = 180
=> ^DBF = ^DEC
xét tam giác FBD và tam giác CED có : BF = EC (gt)
DB = DE do tam giác ABD = tam giác AED (câu a)
=> tam giác FBD = tam giác CED (c-g-c)
c, tam giác FBD = tam giác CED (câu b)
=> ^BDF = ^EDC (đn)
B;D;C thẳng hàng => ^BDE + ^EDC = 180
=> ^BDE + ^BDF = 180
=> E;D;F thẳng hàng
d, AB = AE (gt) => A thuộc đường trung trực của BE (tc)
BD = DE (câu b) => D thuộc đường trung trực của BE (Tc)
=> AD là đường trung trực của BE
e, DF = DC do tam giác BDF = tam giác EDC (Câu b)
=> tam giác DFC cân tại D (đn)
=> ^DCF = (180 - ^FDC) : 2 (tc)
DB = DE (câu b) => tam giác DEB cân tại D (đn) => ^EBD = (180 - ^BDE) : 2 (tc)
^FDC = ^BDE (đối đỉnh)
=> ^DCF = ^EBD mà 2 góc này slt
=> BE // CF
a)Xét \(\Delta\)ABD và \(\Delta\)AED:
AB=AE
BAD=EAD
AD chung
=>\(\Delta\)ABD=\(\Delta\)AED(c-g-c)=>BD=ED
AB=AE=>A nằm trên đường trung trực của BE
BD=ED=>D nằm trên đường trung trực của BE
Suy ra AD là đường trung trực của BE
b)FBD+ABD=180
DEC+AED=180
Mà ABD=AED
Suy ra: FBD=DEC
c)Xét \(\Delta\)BFD và \(\Delta\)EDC
BDF=CDE(đối đỉnh)
BD=ED
FBD=DEC
=>\(\Delta\)BFD=\(\Delta\)EDC(g-c-g)
a) ta có: tam giác ABE cân tại A ( AB = AE)
mà AD là phân giác góc BAE
=> AD vừa là phân giác, vừa là đường trung trực
=> AD là trung trực của BE
b) Gọi giao điểm của BE và AD là I
xét tam giác BDI và EDI
BD = DE ( DA là đường Trung trực của BE)
DI cạnh chung
BI = IE ( AD là trung trực của BE)
=> tam giác BDI = tam giác EDI ( C-c-c)
=> BDI = IDE
ta có FBD = BDA + BAD ( góc ngoài tam giác BAD)
DEC = ADE + DAE ( góc ngoài tam giác EAD)
mà BDA = EDA
BAD = EAD
=> FBD = DEC (đpcm)
chúc bạn thi tốt