tìm số tự nhiên a biết:
1/2x3 + 1/3x4 + 1/4x4 + ...+1/a x (a+1) = 49/100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
=1/2-1/3+1/3-1/4+.......+1/a-1/a+1=49/100
1/2-1/a+1=49/100
1/a+1 = 1/2-49/100
1/a+1=1/100
a+1=100
a=99
\(\frac{1}{2\times3}+\frac{1}{3\times4}+............+\frac{1}{a\times\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..............+\frac{1}{a}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{2}-\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\)
\(\Rightarrow a+1=100\)
\(\Rightarrow a=99\)
Đáp số là a = 99 nha còn cách làm thì Nguyễn Hung Phat đã làm rồi nha
T ik nha bạn =))
Chúc bạn học tốt nhé !!!
1.
a.
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+\frac{1}{5\times6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}=1-\frac{1}{6}=\frac{5}{6}\)
b.
Tích có 100 thừa số
=> n = 100
\(\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times\left(100-100\right)\)
\(=\left(100-1\right)\times\left(100-2\right)\times\left(100-3\right)\times...\times\left(100-99\right)\times0\)
\(=0\)
2.
a.
\(135\times789789-789\times135135=1001\times\left(135\times789-789\times135\right)=1001\times0=0\)
b.
\(\left(28\times9696-96\times2828\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left[101\times\left(28\times96-96\times28\right)\right]\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=\left(101\times0\right)\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\div\left(1\times2\times3\times...\times2015\times2016\right)\)
\(=0\)
3.
a.
\(\left[\left(x+32\right)-17\right]\times2=42\)
\(\left(x+32\right)-17=\frac{42}{2}\)
\(\left(x+32\right)-17=21\)
\(x+32=21+17\)
\(x+32=38\)
\(x=38-32\)
\(x=6\)
b.
\(125+\left(145-x\right)=175\)
\(145-x=175-125\)
\(145-x=50\)
\(x=145-50\)
\(x=95\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(1-\frac{1}{x+1}=\frac{99}{100}\)
=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
=> x+1 = 100
=> x = 100 - 1
=> x = 99
Đặt \(A=\) \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{a\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{2}-\frac{49}{100}\)
\(\)\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\Rightarrow a+1=100\Rightarrow a=100-1\)
\(\Rightarrow a=99\)
Vậy \(a=99\)k cho mik nha :))
\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{a.\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{a}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{a+1}=\frac{49}{100}\)
\(\Rightarrow\frac{1}{a+1}=\frac{1}{100}\)
\(\Rightarrow a+1=100\)
\(\Rightarrow a=99\)
=>1/2-1/3+1/3-1/4+...+1/a-1/a+1=49/100
=>1/2-1/a+1=49/100
=>1/a+1=49/100+1/2
=>1/a+1=99/100
=>\(\frac{99}{\left(a+1\right).99}=\frac{99}{100}\)
=>(a+1).99=100
=>a+1=100/99
=>a=100/99-1
=>a=1/99