Cho
f(x)=\(_{a_{10}x^{10}+a_9x^9+...+a_2x^2+a_1x+}\)\(a_0\)
CMR: f(x) chia het cho x+1 neu tong cac he so cua hang tu bac chẵn = các hệ số hạng tử bậc lẻ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính giá trị của biểu thức S, chúng ta có thể sử dụng công thức khai triển nhị thức Newton. Công thức này cho phép chúng ta tính toán các hệ số a0, a1, a2,..., a11 trong biểu thức (1+x+x^2+...+x^10)^11.
Công thức khai triển nhị thức Newton: (a+b)^n = C(n,0)a^n*b^0 + C(n,1)a^(n-1)b^1 + C(n,2)a^(n-2)b^2 + ... + C(n,n-1)a^1b^(n-1) + C(n,n)a^0b^n
Trong đó, C(n,k) là tổ hợp chập k của n (n choose k), được tính bằng công thức C(n,k) = n! / (k!*(n-k)!).
Áp dụng công thức khai triển nhị thức Newton vào biểu thức (1+x+x^2+...+x^10)^11, ta có:
S = C(11,0)*a0 - C(11,1)*a1 + C(11,2)*a2 - C(11,3)*a3 + ... + C(11,10)*a10 - C(11,11)*a11
Bây giờ, để tính giá trị của S, chúng ta cần tính các hệ số a0, a1, a2,..., a11. Để làm điều này, chúng ta có thể sử dụng công thức C(n,k) để tính các hệ số từng phần tử trong biểu thức (1+x+x^2+...+x^10)^11.
Tuy nhiên, để viết bài giải ngắn nhất có thể, ta có thể sử dụng một số tính chất của tổ hợp chập để rút gọn công thức. Chẳng hạn, ta có các quy tắc sau:
C(n,k) = C(n,n-k) (đối xứng)C(n,0) = C(n,n) = 1C(n,1) = C(n,n-1) = nÁp dụng các quy tắc trên vào công thức của S, ta có:
S = a0 - 11a1 + 55a2 - 165a3 + ... + 330a10 - a11
Với công thức trên, ta chỉ cần tính 11 hệ số a0, a1, a2,..., a10, a11 và thực hiện các phép tính nhân và cộng trừ để tính giá trị của S.
\(S_0=a_0+a_1+...+a_{16}=f\left(1\right)=1\)
Số hạng tổng quát trong khai triển:
\(\sum\limits^8_{k=0}C_8^k\left(x^2+2x\right)^k\left(-2\right)^{8-k}=\sum\limits^8_{k=0}C_8^k\left(-2\right)^{8-k}\sum\limits^k_{i=0}C_k^ix^{2i}\left(2x\right)^{k-i}\)
\(=\sum\limits^8_{k=0}\sum\limits^k_{i=0}C_8^kC_k^i\left(-2\right)^{8-k}2^{k-i}x^{i+k}\)
Số hạng không chứa x thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=0\end{matrix}\right.\)
\(\Rightarrow i=k=0\Rightarrow a_0=C_8^0C_0^0\left(-2\right)^82^0=2^8\)
Số hạng chứa \(x^{16}\) thỏa mãn: \(\left\{{}\begin{matrix}0\le i\le k\le8\\i+k=16\end{matrix}\right.\)
\(\Rightarrow i=k=8\Rightarrow a_{16}=C_8^8C_8^8\left(-2\right)^0.2^0=1\)
\(\Rightarrow S=S_0-\left(a_0+a_{16}\right)=-2^8\)
Lời giải:
Không mất tổng quát, giả sử n chẵn.
Khi đó các hệ số bậc chẵn là: \(a_n, a_{n-2},...,a_0\), và các hệ số bậc lẻ là \(a_{n-1}, a_{n-3},...,a_1\). Theo bài ra ta có:
\(a_n+a_{n-2}+...+a_0=a_{n-1}+a_{n-3}+...+a_1(*)\)
Ta thấy \((-1)^k=\left\{\begin{matrix} \text{1 nếu k chẵn}\\ \text{-1 nếu k lẻ}\end{matrix}\right.\). Do đó:
\(F(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0x^0\)
\(\Rightarrow F(-1)=a_n(-1)^n+a_{n-1}(-1)^{n-1}+...+a_1(-1)+a_0\)
\(=a_n+(-1)a_{n-1}+a_{n-2}+(-1)a_{n-3}+....+(-1)a_1+a_0\)
\(=(a_n+a_{n-2}+...+a_0)-(a_{n-1}+a_{n-3}+...+a_1)\)
\(=0\) (do $(*)$)
Vậy \(F(-1)=0\), tức là $x=-1$ là nghiệm của đa thức $F(x)$
Xét \(x\ne1\)
\(\left(1+x+...+x^{10}\right)^{11}=a_0+a_1x+...+a_{110}x^{110}\)
\(\Leftrightarrow\left(x-1\right)^{11}\left(1+x+...+x^{10}\right)^{11}=\left(x-1\right)^{11}\left(a_1+a_1x+...+a_{110}x^{110}\right)\)
\(\Leftrightarrow\left(x^{11}-1\right)^{11}=\left(x-1\right)^{11}\left(a_0+a_1x+...+a_{110}x^{110}\right)\)
\(VP=\left(x-1\right)^{11}\left(a_0+a_1x+...\right)=\left(\sum\limits^{11}_{k=0}C_{11}^kx^k\left(-1\right)^{11-k}\right)\left(a_0+a_1x+...\right)\) (1)
Ta thấy tổng các hệ số của \(x^{11}\) trong khai triển (1) là:
\(C_{11}^0\left(-1\right)^{11}.a_{11}+C_{11}^1\left(-1\right)^{10}a_{10}+C_{11}^2\left(-1\right)^9a_9+...+C_{11}^{11}\left(-1\right)^0a_0\)
\(=-C_{11}^0a_{11}+C_{11}^1a_{10}-C_{11}^2a_9+...+C_{11}^{11}a_0=-T\)
\(VT=\sum\limits^{11}_{k=0}C_{11}^k\left(x^{11}\right)^k.\left(-1\right)^{11-k}\)
Hệ số của \(x^{11}\) trong khai triển trên là \(C_{11}^1\left(-1\right)^{10}=C_{11}^1=11\)
Mà \(VT=VP\Rightarrow-T=11\Rightarrow T=-11\)
\(f\left(1\right)=a_{2017}+a_{2016}+...+a_3+a_2+a_1+a_0\)
\(f\left(-1\right)=-a_{2017}+a_{2016}+...-a_3+a_2-a_1+a_0\)
\(f\left(1\right)+f\left(-1\right)=2\left(a_{2016}+a_{2014}+...+a_2+a_0\right)\)
\(S=\frac{f\left(1\right)+f\left(-1\right)}{2}=\frac{3^{2017}+1}{2}\)