Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD .Tính số đo góc AMN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔAHB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình của ΔAHB
Suy ra: MN//DP và MN=DP
hay DMNP là hình bình hành
Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD .Tính số đo góc AMN
Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD
B2: Nhìn hình và tìm các làm -> ra.
gọi K là trung điểm AH.
\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)
Mà \(AD\perp AB\)nên \(MK\perp AD\)
Xét \(\Delta AMD\)có \(MK\perp AD\); \(AH\perp MD\)nên K là trực tâm
\(\Rightarrow DK\perp AM\)
Mà DN = \(\frac{1}{2}CD\)
\(\Rightarrow MK=DN\)
tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành
\(\Rightarrow\)DK // MN
\(\Rightarrow\)\(MN\perp AM\)
\(\Rightarrow\)\(\widehat{AMN}=90^o\)