K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N  lần lượt là trung điểm của BH và CD .Tính số đo góc AMN

Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N  lần lượt là trung điểm của BH và CD

B2: Nhìn hình và tìm các làm -> ra.

21 tháng 5 2019

A B C D H M N K

gọi K là trung điểm AH.

\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)

Mà \(AD\perp AB\)nên \(MK\perp AD\)

Xét \(\Delta AMD\)có \(MK\perp AD\)\(AH\perp MD\)nên K là trực tâm

\(\Rightarrow DK\perp AM\)

Mà DN = \(\frac{1}{2}CD\)

\(\Rightarrow MK=DN\)

tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành

\(\Rightarrow\)DK // MN

\(\Rightarrow\)\(MN\perp AM\)

\(\Rightarrow\)\(\widehat{AMN}=90^o\)

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔADH vuông tại H và ΔABH vuông tại H có

góc HAD=góc HBA

Do đó: ΔADH đồng dạng với ΔBAH

Suy ra: HA/HB=HD/HA

hay \(HA^2=HD\cdot HB\)

b: \(BD=9+16=25cm\)

\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)

AB=20cm

c: Xét ΔAHB có

K là trung điểm của AH

M là trung điểm của HB

Do đó: KM là đường trung bình

=>KM//AB và KM=AB/2

=>KM//DN và KM=DN

=>DKMN là hình bình hành

a: Xét ΔAHB có

M là trung điểm của HA

N là trung điểm của HB

Do đó: MN là đường trung bình của ΔAHB

Suy ra: MN//DP và MN=DP

hay DMNP là hình bình hành