K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2019

Xét hai trường hợp n chẵn và n lẻ sau đâu:

a)    Nếu n là số lẻ thì do tích n số tự nhiên bằng n lẻ nên tất cả n số đều là các số lẻ, và tổng của n số lẻ là một số lẻ nên không thể bằng 2012 (loại trường hợp này)

b)   Nếu n là số chẵn thì do tích n số tự nhiên bằng n nên trong n số đã cho có ít nhất 1 số chẵn. Xét hai khả năng sau đây:

+) Nếu trong n số chỉ có đúng một số chẵn, thì (n – 1) số còn lại đều là các số lẻ, khi đó tổng của (n – 1) số lẻ là một số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012 (loại khả năng này).

+) Nếu trong n số có ít nhất 2 số chẵn thì tích cỉa 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên suy ra chia hết cho 4.

21 tháng 5 2019

  Xét 2 trường hợp:

TH1: Nếu n là số lẻ thì tích của n số là số lẻ nên các số trong n số đều lẻ

                => Tổng n số tự nhiên này là số lẻ

         Mà theo đề bài tổng n số này là chẵn  => loại 

TH2: Nếu n là số chẵn thì tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn

+,  Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ => Tổng các số là lẻ ( loại )

+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4

   Theo giả thiết: tích của n số tự nhiên bằng n

         => n chia hết cho 4

7 tháng 6 2023

giúp tui

 

 

Theo 2 trường hợp:

TH1 : n là số lẻ

=> tích của n số là số lẻ nên các số trong n số đều lẻ

vậy tổng n số tự nhiên là số lẻ, mà theo đề bài tổng n số này là chẵn  => loại .

TH2 : n là số chẵn

=>  tích của n số này là chẵn nên trong n số phải có ít nhất 1 số chẵn

,  Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ

=> Tổng các số là lẻ ( loại )

+, Nếu trong n số có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4

   Theo đề bài trên : tích của n số tự nhiên bằng n

    Vậy n chia hết cho 4

1 tháng 3 2015

Xét 2 trường hợp n chẵn và n lẻ sau đây:

A) Nếu n là số lẻ thì tích n số tự nhiên bằng lẻ nên tất cả các số trong n đều là số lẻ, tổng của n số lẻ là một số lẻ mà theo đề bài, tổng của n số là 2012 ( loại trường hợp này)

B) Nếu n là số chẵn thì tích n số tự nhiên là một số chẵn nên trong n phải ít nhất có một số chẵn. Xét 2 khả năng sau:

 + Nếu trong n chỉ có 1 số chẵn thì (n-1) còn lại đều là các số lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012( loại khả năng này)

+Nếu trong n có ít nhất 2 số chẵn thì tích của 2 số này chia hết cho 4. Theo giả thiết, tích của n số tự nhiên bằng n nên n chia hết cho 4. 

1 tháng 8 2018

Chứng minh rằng nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4.
Lời giải. Xét tính chẵn lẻ của n. Nếu n là số lẻ thì tích n số tự nhiên bằng n lẻ nên tất cả n số đều là
các số lẻ. Do đó tổng của n là số lẻ, khác 2012. Nếu n là số chữ thì suy ra ít nhất một trong n số phải là
số chẵn. Xét các trường hợp sau
Nếu trong n số chỉ có đúng một số chẵn thì n − 1 số còn lại đều là số lẻ. Tổng của n − 1 số lẻ là một số
lẻ, kết hợp với số chẵn duy nhất thì tổng của n số đã cho là một số lẻ và không thể bằng 2012 (loại khả
năng này).
Nếu có ít nhất hai số chẵn trong n số thì tích của hai số này phải chia hết cho 4. Theo giải thiết, tích của
n số tự nhiên bằng n nên suy ra n chia hết cho 4.

24 tháng 11 2016

Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )

a) n+3 : n-2

=> n+3 : n+3-5 

=> n+3 : 5 ( Vì n+3 : n+3 )

=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!

b) 2n+9 : n-3

=> n + n + 11 - 3 : n-3 

=> n + 11 : n-3

=> n + 14 - 3 : n-3

=> 14 : n - 3 ( Vì n - 3 : n-3 )

=> n-3 là Ư(14) => Tự làm tiếp

c) + d) thì bạn tự làm nhé!

-> Chúc bạn học giỏi :))

8 tháng 6 2019

#)Giải :

Bài 3 :

Ta xét các trường hợp: 

TH1 : Nếu n là số lẻ :

=> Tích của n số là số lẻ => các chữ số của n đều là số lẻ 

=> Tổng n số tự nhiên này là số lẻ 

Vì theo đề bài tổng n số này là số chẵn => loại 

TH2 : Nếu n là số chẵn :

=> Tích của n số là số chẵn => Trong n số có ít nhất một số chẵn :

+) Nếu trong n số chỉ có 1 số chẵn thì (n-1) số còn lại là lẻ => loại 

+) Nếu trong n số có ít nhất 2 số chẵn => Tích hai số này chia hết cho 4

Theo đề bài : Tích của n số tự nhiên bằng n 

=> n chia hết cho 4 ( đpcm )

1 tháng 1 2022

sao mà tham lam thế

2 tháng 2 2015

3.a)n và 2n có tổng các chữ số bằng nhau => hiệu của chúng chia hết cho 9

mà 2n-n=n=>n chia hết cho 9 => đpcm

16 tháng 1 2017

câu 1 bạn châu sai rồi

 1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn...
Đọc tiếp

 1. Chứng minh rằng tổng các số ghi trên vé xổ số có 6 chữ số mà tổng 3 chữ số đầu bằng tổng 3 chữ số cuối thì chia hết cho 13 ( các chữ số đầu có thể bằng không )

2. Tìm số abcd biết rằng số đó chia hết cho tích ab và cd

3. Chứng minh rằng trong tất cả các số tự nhiên khác nhau có 7 chữ số lập bởi cả 7 chữ số 1, 2, 3, 4, 5, 6, 7, không có 2 số nào mà một số chia hết chosố còn lại.

4. Cho 3 số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước d đơn vị. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6.

5. Hãy viết số 100 dưới dạng tổng các số lẽ lien tiếp.

6. Tìm số tự nhiên có 3 chữ số, biết rằng nó tăng gấp n lần nếu cộng mỗi chữ số của nó với n ( n là số tự nhiên, có thể gồm một hoặc nhiều chữ số ).

7. Tìm số tự nhiên x có chữ số tận cùng bằng 2, biết rằng x, 2x, 3x đều là các số có 3 chữ số và 9 chữ số của 3 số đó đều khác nhau và khác không.

8. Tìm số tự nhiên x có 6 chữ số, biết rằng các tích 2x, 3x, 4x, 5x, 6x cũng là số có 6 chữ số gồm cả 6 chữ số ấy.a. Cho biết 6 chữ số của số phải tìm là 1, 2, 4, 5, 7, 8.b. Giải bài toán nếu không cho điều kiện a.

9. Tìm số tự nhiên n lớn nhất để tích các số tự nhiên từ 1 đến 1000 chia hết  cho 5n

Xem nội dung đầy đủ tại:http://123doc.org/document/2674306-tuyen-chon-toan-nang-cao-va-phat-trien-lop-6.htm

0