cho các số a, b, c thỏa mãn : a^3+8b^3=1-6ab. tính a+2b.
mk cần rất gấp các n giúp mk vs nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài ta có:
a + b = -8
b + c = -6
c + a = 16
\(\Rightarrow\)(a + b) + (b + c) + (c + a) = (-8) + (-6) + 16 = 2
Mà (a + b) + (b + c) + (c + a) = a + b + b + c + c + a = 2a + 2b + 2c =2(a+b+c)
\(\Rightarrow a+b+c=2\div2=1\)
\(\Rightarrow a=\left(a+b+c\right)-\left(b+c\right)=1-\left(-6\right)=7\)
\(\Rightarrow b=\left(a+b+c\right)-\left(c+a\right)=1-16=-15\)
\(\Rightarrow c=\left(a+b+c\right)-\left(a+b\right)=1-\left(-8\right)=9\)
Vậy a = 7; b = -15; c = 9
ab-ac+bc-c2=b(a+c)-c(a+c)=(b-c)(a+c)
=>\(\orbr{\begin{cases}b=c+1,a=-1-c\\b=c-1,a=1-c\end{cases}}\)
\(\Leftrightarrow\frac{a}{b}=-1\)
\(100^3-99^1+1\)
\(=100^3-\left(100-1\right)^3+1\)
\(=100^3-\left[100^3-3.100^2+3.100-1\right]+1\)
\(=3.100^2-3.100+2\)
\(=29702\)
a) Ta có: |2x-3|=x-6
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=x-6\\2x-3=6-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-3-x+6=0\\2x-3-6+x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy: \(x\in\left\{-3;3\right\}\)
\(\Leftrightarrow a^3+6a^2b+12ab^2+8b^3=6a^2b+12ab^2-6ab+1\)
\(\Leftrightarrow\left(a+2b\right)^3=6ab\left(a+2b-1\right)+1\)
\(\Leftrightarrow\left(a+2b\right)^3-1-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(\left(a+2b\right)^2+a+2b+1\right)-6ab\left(a+2b-1\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2+4ab+4b^2+a+2b+1-6ab\right)=0\)
\(\Leftrightarrow\left(a+2b-1\right)\left(a^2-2ab+4b^2+a+2b+1\right)=0\)
TH1: Nếu \(a+2b-1=0\)
\(\Leftrightarrow a+2b-1=0\)
\(\Rightarrow a+2b=1\)
TH2: \(a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow a^2-2ab+4b^2+a+2b+1=0\)
\(\Leftrightarrow\left(a-b+\frac{1}{2}\right)^2+3\left(b+\frac{1}{2}\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}a-b+\frac{1}{2}=0\\b+\frac{1}{2}=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow a+2b=-2\)