Rút gọn bt: x^n-2( x^2-1)-x(x^n-1-x^n-3) vs n€ N , n>_ 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S\left(x\right)=\dfrac{1}{x^2}+\dfrac{2}{x^3}+...+\dfrac{n}{x^{n+1}}\)
\(\Rightarrow x.S\left(x\right)=\dfrac{1}{x}+\dfrac{2}{x^2}+\dfrac{3}{x^3}+...+\dfrac{n}{x^n}\)
\(\Rightarrow x.S\left(x\right)-S\left(x\right)=\dfrac{1}{x}+\dfrac{1}{x^2}+\dfrac{1}{x^3}+...+\dfrac{1}{x^n}-\dfrac{n}{x^{n+1}}\)
\(\Rightarrow\left(x-1\right)S\left(x\right)=\dfrac{1}{x}.\dfrac{1-\left(\dfrac{1}{x}\right)^n}{1-\dfrac{1}{x}}-\dfrac{n}{x^{n+1}}=\dfrac{x^n-1}{x^n\left(x-1\right)}-\dfrac{n}{x^{n+1}}=\dfrac{x^{n+1}-x-n\left(x-1\right)}{x^{n+1}\left(x-1\right)}\)
\(\Rightarrow S\left(x\right)=\dfrac{x^{n+1}-\left(n+1\right)x+n}{x^{n+1}\left(x-1\right)^2}\)
a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\) \(\left(ĐKXĐ:x\ge0\right)\)
\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)
\(\text{}\text{}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)
\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)
b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)
\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)
\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)
c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)
\(\Leftrightarrow x-\sqrt{x}+1>x\)
\(\Leftrightarrow x< 1\)
a: ĐKXĐ: \(x\ge0\)
Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)
\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)
\(\left(x^n+1\right)\left(x^n-2\right)-x^{n-3}\left(x^{n+3}-x^3\right)+2018=x^{2n}+x^n-2.x^n-2-x^{2n}+x^n+2018=2016.\)
\(E=x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(\Leftrightarrow E=x^n-x^{n-2}-x^n+x^{n-2}\)
\(\Leftrightarrow E=0\)
E = xn - 2(x2 - 1) - x(xn - 1 - xn - 3)
E = xn - xn - 1 - x(xn - 1 - xn - 3)
E = xn - xn - 2 - xn + xn - 2
E = (xn - xn) + (-xn - 2 + xn - 2)
E = 0
\(=\dfrac{3x^2-x+3-x^2+2x-1-2x^2-2x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{-x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{-1}{x^2+x+1}\)
\(x^{n-2}\left(x^2-1\right)-x\left(x^{n-1}-x^{n-3}\right)\)
\(=x-x^{n-2}-x+x^{n-2}\)
\(=0\)